New inequalities for the triangle

Mihály Bencze, Nicușor Minulete and Ovidiu T. Pop

ABSTRACT. In this paper we will prove some new inequalities for the triangle. Among these, we will improve Euler’s Inequality, Mitrinović’s Inequality and Weitzenböck’s Inequality, thus:

\[R \geq \frac{4}{\sum_{\text{cyclic}} \sqrt{F_\lambda \left(\frac{1}{n_a}, \frac{1}{n_b} \right) (n)}} \geq 2r; \quad s \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_\lambda \left(s - a, s - b \right) (n)} \geq 3\sqrt{3}r; \]

and

\[a^{2\alpha} + b^{2\alpha} + c^{2\alpha} \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_\lambda \left(a^{2\alpha}, b^{2\alpha} \right) (n)} \geq 3 \left(\frac{4\Delta}{\sqrt{3}} \right)^{\alpha}, \]

where \(F_\lambda \left(x, y \right) (n) = [(1 + (1 - 2\lambda)^n) x + (1 - (1 - 2\lambda)^n) y] \cdot [(1 - (1 - 2\lambda)^n) + (1 + (1 - 2\lambda)^n) y], \) with \(\lambda \in [0, 1], \) for any \(x, y \geq 0 \) and for all integers \(n \geq 0. \)

1. INTRODUCTION

Among well known the geometric inequalities, we recall the famous inequality of Euler, \(R \geq 2r, \) the inequality of Mitrinović, \(s \geq 3\sqrt{3}r, \) and in the year 1919 Weitzenböck published in Mathematische Zeitschrift the following inequality,

\[a^2 + b^2 + c^2 \geq 4\sqrt{3}\Delta. \]

This inequality later, in 1961, was given at the International Mathematical Olympiad. In 1927, this inequality appeared as the generalization

\[\Delta \leq \frac{\sqrt{3}}{4} \left(\frac{a^k + b^k + c^k}{3} \right)^{\frac{2}{k}}, \]

in one of the issues of the American Mathematical Monthly. For \(k = 2, \) we obtain the Weitzenböck Inequality.

In this paper we will prove several improvements for these inequalities.

\[^5\text{Received: 17.03.2009} \]

2000 Mathematics Subject Classification. 26D05, 26D15, 51M04

Key words and phrases. Geometric inequalities, Euler’s inequality, Mitrinovic’s inequality, Weitzenböck inequality.
2. MAIN RESULTS

In the following, we will use the notations: a, b, c—the lengths of the sides, h_a, h_b, h_c—the lengths of the altitudes, r_a, r_b, r_c—the radii of the excircles, s is the semi-perimeter; R is the circumradius, r—the inradius, and Δ—the area of the triangle ABC.

Lemma 2.1 If $x, y \geq 0$ and $\lambda \in [0, 1]$, then the inequality

$$\left(\frac{x + y}{2}\right)^2 \geq [(1 - \lambda) x + \lambda y] \cdot [\lambda x + (1 - \lambda) y] \geq xy \quad (2.1)$$

holds.

Proof. The inequality

$$\left(\frac{x + y}{2}\right)^2 \geq [(1 - \lambda) x + \lambda y] \cdot [\lambda x + (1 - \lambda) y]$$

is equivalent to

$$(1 - 2\lambda)^2 x^2 - 2(1 - 2\lambda)^2 xy + (1 - 2\lambda)^2 y^2 \geq 0,$$

which means that

$$(1 - 2\lambda)^2 (x - y)^2 \geq 0,$$

which is true. The equality holds if and only if $\lambda = \frac{1}{2}$ or $x = y$.

The inequality

$$[(1 - \lambda) x + \lambda y] \cdot [\lambda x + (1 - \lambda) y] \geq xy$$

becomes

$$\lambda (1 - \lambda) x^2 - 2\lambda (1 - \lambda) xy + \lambda (1 - \lambda) y^2 \geq 0$$

Therefore, we obtain

$$\lambda (1 - \lambda) (x - y)^2 \geq 0,$$

which is true, because $\lambda \in [0, 1]$. The equality holds if and only if $\lambda \in \{0, 1\}$ or $x = y$.

We consider the expression

$$F_\lambda (x, y) (n) = [(1 + (1 - 2\lambda)^n) x + (1 - (1 - 2\lambda)^n) y].$$
· \((1 - (1 - 2\lambda)^n) x + (1 + (1 - 2\lambda)^n) y\),

with \(\lambda \in [0, 1]\), for any \(x, y \geq 0\), and for all integers \(n \geq 0\).

Theorem 2.2 There are the following relations:

\[
F_{\lambda} ((1 - \lambda) x + \lambda y, \lambda x + (1 - \lambda) y) (n) = F_{\lambda} (x, y) (n + 1); \quad (2.2)
\]

\[
F_{\lambda} (x, y) (n + 1) \geq F_{\lambda} (x, y) (n) \quad (2.3)
\]

and

\[
(x + y)^2 \geq F_{\lambda} (x, y) (n) \geq 4xy, \quad (2.4)
\]

for any \(\lambda \in [0, 1]\), for any \(x, y \geq 0\) and all integers \(n \geq 0\).

Proof. We make the following calculation:

\[
F_{\lambda} ((1 - \lambda) x + \lambda y, \lambda x + (1 - \lambda) y) (n) = \]

\[
= [(1 + (1 - 2\lambda)^n) ((1 - \lambda) x + \lambda y) + (1 - (1 - 2\lambda)^n) (\lambda x + (1 - \lambda) y)].
\]

\[
\cdot [(1 - (1 - 2\lambda)^n) ((1 - \lambda) x + \lambda y) + (1 + (1 - 2\lambda)^n) (\lambda x + (1 - \lambda) y)] =
\]

\[
= \left\{[1 - \lambda + (1 - \lambda) (1 - 2\lambda)^n + \lambda - (1 - \lambda) (1 - 2\lambda)^n] x +
\right.
\]

\[
+ [\lambda + \lambda (1 - 2\lambda)^n + 1 - \lambda - (1 - \lambda) (1 - 2\lambda)^n] y \}
\]

\[
\cdot \left\{[1 - \lambda - (1 - \lambda) (1 - 2\lambda)^n + \lambda + (1 - 2\lambda)^n] x +
\right.
\]

\[
+ [\lambda - (1 - 2\lambda)^n + 1 - \lambda + (1 - \lambda) (1 - 2\lambda)^n] y \}
\]

\[
= \left[\left(1 + (1 - 2\lambda)^{n+1}\right) x + \left(1 - (1 - 2\lambda)^{n+1}\right) y\right]
\]

\[
\left[\left(1 - (1 - 2\lambda)^{n+1}\right) x + \left(1 + (1 - 2\lambda)^{n+1}\right) y\right] =
\]
\[F_\lambda(x, y) (n+1), \]

so \(F_\lambda((1-\lambda)x + \lambda y, \lambda x + (1-\lambda)y)(n) = F_\lambda(x, y)(n+1). \)

We use the induction on \(n \). For \(n = 0 \), we obtain the inequality

\[F_\lambda(x, y)(1) \geq F_\lambda(x, y)(0). \]

Therefore, we deduce the following inequality:

\[4 |(1-\lambda)x + \lambda y| \cdot |\lambda x + (1-\lambda)y| \geq 4xy, \]

which is true, from Lemma 2.1.

We assume it is true for every integer \(\leq n \), so

\[F_\lambda(x, y)(n+1) \geq F_\lambda(x, y)(n) \]

We will prove that

\[F_\lambda(x, y)(n+2) \geq F_\lambda(x, y)(n+1). \quad (2.5) \]

Using the substitutions \(x \to (1-\lambda)x + \lambda y \) and \(y \to \lambda x + (1-\lambda)y \) in the inequality (2.3), we deduce

\[F_\lambda((1-\lambda)x + \lambda y, \lambda x + (1-\lambda)y)(n) \geq \]

\[\geq F_\lambda((1-\lambda)x + \lambda y, \lambda x + (1-\lambda)y)(n), \]

so, from equality (2.2), we have

\[F_\lambda(x, y)(n+2) \geq F_\lambda(x, y)(n+1). \]

so we obtain (2.6).

According to inequality (2.3), we can write the sequence of inequalities

\[F_\lambda(x, y)(n) \geq F_\lambda(x, y)(n-1) \geq \ldots \geq F_\lambda(x, y)(1) \geq F_\lambda(x, y)(0) = 4xy. \]

Therefore, we have

\[F_\lambda(x, y)(n) \geq 4xy, \text{ for any } \lambda \in [0, 1], x, y \geq 0 \text{ and for all integers } n \geq 0. \]
If $\lambda \in (0, 1)$, then $1 - 2\lambda \in (-1, 1)$ and passing to limit when $n \to \infty$, we obtain

$$\lim_{n \to \infty} F_\lambda (x, y) (n) = (x + y)^2.$$

Since the sequence $(F_\lambda (x, y) (n))_{n \geq 0}$ is increasing, we deduce

$$(x + y)^2 \geq F_\lambda (x, y) (n),$$

for any $\lambda \in (0, 1), x, y \geq 0$ and for all integers $n \geq 0$.

From the inequalities above we have that

$$(x + y)^2 \geq F_\lambda (x, y) (n) \geq 4xy,$$

for any $\lambda \in (0, 1), x, y \geq 0$ and for all integers $n \geq 0$.

If $\lambda = 0$ and $\lambda = 1$, then $F_\lambda (x, y) (n) = 4xy$, so

$$(x + y)^2 \geq F_\lambda (x, y) (n) \geq 4xy.$$

It follows that

$$(x + y)^2 \geq F_\lambda (x, y) (n) \geq 4xy,$$

for any $\lambda \in [0, 1], x, y \geq 0$ and for all integers $n \geq 0$.

Thus, the proof of Theorem 2.2 is complete.

Remark 1. It is easy to see that there is the sequence of inequalities

$$(x + y)^2 \geq ... \geq F_\lambda (x, y) (n) \geq F_\lambda (x, y) (n - 1) \geq ...$$

$$... \geq F_\lambda (x, y) (1) \geq F_\lambda (x, y) (0) = 4xy.$$

(2.6)

Corollary 2.3. There are the following inequalities:

$$x + y \geq \sqrt{F_\lambda (x, y) (n)} \geq 2\sqrt{xy};$$

(2.7)

$$x^2 + y^2 \geq \sqrt{F_\lambda (x^2, y^2) (n)} \geq 2xy;$$

(2.8)

$$x + y + z \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_\lambda (x, y) (n)} \geq \sqrt{xy} + \sqrt{yz} + \sqrt{zx};$$

(2.9)
New inequalities for the triangle

\[x^2 + y^2 + z^2 \geq \frac{1}{2} \sum_{cyclic} F_\lambda (x, y) (n) \geq xy + yz + zx; \]
(2.10)

\[x^2 + y^2 + z^2 + xy + yz + zx \geq \frac{1}{2} \sum_{cyclic} F_\lambda (x, y) (n) \geq 2 (xy + yz + zx) \]
(2.11)

and

\[(x + y) (y + z) (z + x) \geq \prod_{cyclic} F_\lambda (x, y) (n) \geq 8xyz, \]
(2.12)

for any \(\lambda \in [0, 1] \), for any \(x, y \geq 0 \), and for all integers \(n \geq 0 \).

Proof. From Theorem 2.2, we easily deduce inequality (2.7). Using the substitutions \(x \rightarrow x^2 \) and \(y \rightarrow y^2 \) in inequality (2.7), we obtain inequality (2.8). Similarly to inequality (2.7), \(x + y \geq \sqrt{F_\lambda (x, y) (n)} \geq 2 \sqrt{xy} \), we can write the following inequalities:

\[y + z \geq \sqrt{F_\lambda (y, z) (n)} \geq 2 \sqrt{yz} \]
and

\[z + x \geq \sqrt{F_\lambda (z, x) (n)} \geq 2 \sqrt{zx} \],

which means, by adding, that

\[x + y + z \geq \frac{1}{2} \sum_{cyclic} \sqrt{F_\lambda (x, y) (n)} \geq \sqrt{xy} + \sqrt{yz} + \sqrt{zx}. \]

It is easy to see that, by making the substitutions \(x \rightarrow x^2 \) and \(y \rightarrow y^2 \) in inequality (2.9), we obtain inequality (2.10). Similar to inequality (2.4), \((x + y)^2 \geq F_\lambda (x, y) (n) \geq 4xy \), we obtain the following inequalities:

\[(y + z)^2 \geq F_\lambda (y, z) (n) \geq 4yz \]
and

\[(z + x)^2 \geq F_\lambda (z, x) (n) \geq 4zx. \]

By adding them, we have inequality (2.11) and by multiplying them, we obtain inequality (2.12).

Lemma 2.4 For any triangle ABC, the following inequality,

\[\sqrt{ab} + \sqrt{bc} + \sqrt{ca} \geq \frac{4\Delta}{R}, \]
(2.13)

holds.

Proof. We apply the arithmetic-geometric mean inequality and we find that

\[\sqrt{ab} + \sqrt{bc} + \sqrt{ca} \geq 3 \sqrt[3]{abc}. \]
It is sufficient to show that
\[3\sqrt{abc} \geq \frac{4\Delta}{R}. \]
(2.14)

Inequality (2.14) is equivalent to
\[27abc \geq \frac{64\Delta^3}{R^3}, \]
so
\[27 \cdot 4R\Delta \geq \frac{64\Delta^3}{R^3}, \]
which means that
\[27R^4 \geq 16\Delta^2. \]
(2.15)

Using Mitrinović's Inequality, \(3\sqrt{3}R \geq 2s\), and Euler's Inequality \(R \geq 2r\), we deduce, by multiplication, that
\[3\sqrt{3}R^2 \geq 4\Delta. \]
It follows (2.15).

Corollary 2.5. In any triangle ABC, there are the following inequalities:

\[
R \geq \frac{4}{\sum_{cyclic} \sqrt{F_\lambda \left(\frac{1}{h_a}, \frac{1}{h_b} \right) (n)}} \geq 2r; \tag{2.16}
\]

\[
s \geq \frac{1}{2} \sum_{cyclic} \sqrt{F_\lambda (s-a, s-b) (n)} \geq 3\sqrt{3}r \tag{2.17}
\]

and
\[
a^{2\alpha} + b^{2\alpha} + c^{2\alpha} \geq \frac{1}{2} \sum_{cyclic} \sqrt{F_\lambda \left(a^{2\alpha}, b^{2\alpha} \right) (n)} \geq 3 \left(\frac{4\Delta}{\sqrt{3}} \right)^\alpha, \tag{2.18}
\]

for any \(\lambda \in [0,1], x, y \geq 0, n \geq 0 \) and \(\alpha \) is a real numbers.

Proof. Making the substitutions \(x = \frac{1}{h_a}, y = \frac{1}{h_b} \) and \(z = \frac{1}{h_c} \) in inequality (2.9), we obtain

\[
\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} \geq \frac{1}{2} \sum_{cyclic} \sqrt{F_\lambda \left(\frac{1}{h_a}, \frac{1}{h_b} \right) (n)} \geq \frac{1}{\sqrt{h_ah_b}} + \frac{1}{\sqrt{h_bh_c}} + \frac{1}{\sqrt{h_ch_a}}. \tag{2.19}
\]
New inequalities for the triangle

According to the equalities
\[h_a = \frac{2\Delta}{a}, h_b = \frac{2\Delta}{b} \text{ and } h_c = \frac{2\Delta}{c}, \]
we have
\[\frac{1}{\sqrt{h_a h_b}} + \frac{1}{\sqrt{h_b h_c}} + \frac{1}{\sqrt{h_c h_a}} = \frac{1}{2\Delta} \left(\sqrt{ab} + \sqrt{bc} + \sqrt{ca} \right). \]
From Lemma 2.4, we deduce
\[\frac{1}{\sqrt{h_a h_b}} + \frac{1}{\sqrt{h_b h_c}} + \frac{1}{\sqrt{h_c h_a}} \geq \frac{2}{R}. \]
If we use the identity
\[\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} = \frac{1}{r} \]
and inequality from above then inequality (2.18) becomes
\[\frac{1}{r} \geq \frac{1}{2} \sum_{cyclic} \sqrt{F_\lambda \left(\frac{1}{h_a}, \frac{1}{h_b} \right)} (n) \geq \frac{2}{R}. \quad (2.20) \]
Consequently the inequalities (2.16) follows.

If in inequality (2.9) we take \(x = s - a, y = s - b \) and \(z = s - c \), then we deduce the inequality
\[s \geq \frac{1}{2} \sum_{cyclic} \sqrt{F_\lambda (s-a, s-b)} (n) \geq \sqrt{(s-a)(s-b)} + \sqrt{(s-b)(s-c)} + \sqrt{(s-c)(s-a)}. \quad (2.21) \]
But, we know the identity \(\sum_{cyclic} \sqrt{(s-a, s-b)} = \sum_{cyclic} \sqrt{bc} \sin \frac{A}{2} \).

Using the arithmetic-geometric mean inequality, we obtain
\[\sum_{cyclic} \sqrt{bc} \sin \frac{A}{2} \geq 3 \sqrt[3]{abc} \sin \frac{A}{2} \frac{B}{2} \sin \frac{C}{2} = 3 \sqrt[3]{4R\Delta r} = \frac{r}{4R} = 3\sqrt{\Delta r} \geq 3\sqrt[3]{3r^3} = 3\sqrt{3r}. \]
Hence,
\[\sqrt{(s-a)(s-b)} + \sqrt{(s-b)(s-c)} + \sqrt{(s-c)(s-a)} \geq 3\sqrt{3}r, \quad (2.22) \]

which means, according to inequalities (2.21) and (2.22), that

\[s \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}(s-a, s-b)} \geq 3\sqrt{3}r. \]

Making the substitutions \(x = a^\alpha, y = b^\alpha, \) and \(z = c^\alpha \) in inequality (2.9), we obtain the following inequality:

\[a^{2\alpha} + b^{2\alpha} + c^{2\alpha} \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}(a^{2\alpha}, b^{2\alpha})} \geq a^\alpha b^\alpha + b^\alpha c^\alpha + c^\alpha a^\alpha. \quad (2.23) \]

Applying the arithmetic-geometric mean inequality and Pólya-Szegő's Inequality, \(\sqrt[3]{a^2 b^2 c^2} \geq \frac{4\Delta}{\sqrt[3]{3}} \), we deduce

\[a^\alpha b^\alpha + b^\alpha c^\alpha + c^\alpha a^\alpha \geq \frac{3}{4} \sqrt{(a^2 b^2 c^2)^\alpha} = 3 \left(\frac{\sqrt[3]{a^2 b^2 c^2}}{\sqrt[3]{3}} \right)^\alpha \geq 3 \left(\frac{4\Delta}{\sqrt[3]{3}} \right)^\alpha, \]

so

\[a^\alpha b^\alpha + b^\alpha c^\alpha + c^\alpha a^\alpha \geq 3 \left(\frac{4\Delta}{\sqrt[3]{3}} \right)^\alpha. \quad (2.24) \]

According to inequalities (2.23) and (2.24), we obtain the inequality

\[a^{2\alpha} + b^{2\alpha} + c^{2\alpha} \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}(a^{2\alpha}, b^{2\alpha})} \geq 3 \left(\frac{4\Delta}{\sqrt[3]{3}} \right)^\alpha. \]

Thus, the statement is true.

Remark 2.

a) Inequality (2.16) implies the sequence of inequalities

\[
R \geq \frac{4}{\sum_{\text{cyclic}} \sqrt{F_{\lambda}(\frac{1}{n_a}, \frac{1}{n_b})}} \geq ... \geq \frac{4}{\sum_{\text{cyclic}} \sqrt{F_{\lambda}(\frac{1}{n_a}, \frac{1}{n_b})}} \geq \frac{4}{\sum_{\text{cyclic}} \sqrt{F_{\lambda}(\frac{1}{n_a}, \frac{1}{n_b})}} \geq ... \geq 2r \quad (2.25)
\]

b) For \(\alpha = 1 \) in inequality (2.18), we obtain
New inequalities for the triangle

\[a^2 + b^2 + c^2 \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}(a^2, b^2)}(n) \geq 4\sqrt{3}\Delta, \quad (2.26) \]

which proves Weitzenböck’s Inequality, namely

\[a^2 + b^2 + c^2 \geq 4\sqrt{3}\Delta. \]

Corollary 2.6. For any triangle ABC, there are the following inequalities:

\[2(s^2 - r^2 - 4Rr) \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}(a^2, b^2)}(n) \geq s^2 + r^2 + 4Rr, \quad (2.27) \]

\[s^2 - 2r^2 - 8Rr \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}((s-a)^2, (s-b)^2)}(n) \geq r(4R + r), \quad (2.28) \]

\[\frac{(s^2 + r^2 + 4Rr)^2 - 8s^2Rr}{4R^2} \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}(h_a^2, h_b^2)}(n) \geq \frac{2s^2r}{R}, \quad (2.29) \]

\[(4R + r)^2 - 2s^2 \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}(r_a^2, r_b^2)}(n) \geq s^2, \quad (2.30) \]

\[\frac{8R^2 + r^2 - s^2}{8R^2} \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}\left(\frac{\sin^4 A}{2}, \frac{\sin^4 B}{2}\right)}(n) \geq \frac{s^2 + r^2 - 8Rr}{16R^2} \quad (2.31) \]

and

\[\frac{(4R + r)^2 - s^2}{4R^2} \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}\left(\frac{\cos^4 A}{2}, \frac{\cos^4 B}{2}\right)}(n) \geq \frac{s^2 + (4R + r)^2}{8R^2}. \quad (2.32) \]

Proof. According to Corollary 2.3 we have the inequality

\[x^2 + y^2 + z^2 \geq \frac{1}{2} \sum_{\text{cyclic}} \sqrt{F_{\lambda}(x^2, y^2)}(n) \geq xy + yz + zx. \]

Using the substitutions
Corollary 2.7. In any triangle ABC, there are the following inequalities:

\[
3s^2 - r^2 - 4Rr \geq \frac{1}{2} \sum_{cyclic} F_{\lambda}(a,b)(n) \geq 2 \left(s^2 + r^2 + 4Rr \right), \tag{2.33}
\]

\[
s^2 - r^2 - 4Rr \geq \frac{1}{2} \sum_{cyclic} F_{\lambda}(s-a,s-b)(n) \geq 2r \left(4R + r \right), \tag{2.34}
\]

\[
\frac{(s^2 + r^2 + 4Rr)^2 - 8s^2Rr}{4R^2} \geq \frac{1}{2} \sum_{cyclic} F_{\lambda}(h_a,h_b)(n) \geq \frac{4s^2r}{R}, \tag{2.35}
\]

and

\[
(4R + r)^2 - s^2 \geq \frac{1}{2} \sum_{cyclic} F_{\lambda}(r_a,r_b)(n) \geq 2s^2 \tag{2.36}
\]

Proof. According to Corollary 2.3, we have the inequality

\[
x^2 + y^2 + z^2 + xy + yz + zx \geq \frac{1}{2} \sum_{cyclic} F_{\lambda}(x,y)(n) \geq 2 \left(xy + yz + zx \right). \]

Using the substitutions

\[
(x, y, z) \in \{(a, b, c), (s - a, s - b, s - c), (h_a, h_b, h_c), (r_a, r_b, r_c)\}
\]

we deduce the inequalities from the statement.

Corollary 2.8. For any triangle ABC there are the following inequalities:

\[
2s \left(s^2 + r^2 + 2Rr \right) \geq \prod_{cyclic} \sqrt{F_{\lambda}(a,b)(n)} \geq 32sRr, \tag{2.37}
\]

\[
4sRr \geq \prod_{cyclic} \sqrt{F_{\lambda}((s-a),(s-b))(n)} \geq 8sr^2, \tag{2.38}
\]
New inequalities for the triangle

\[\frac{s^2 r (s^2 + r^2 + 4Rr)}{R^2} \geq \prod_{\text{cyclic}} \sqrt{F_\lambda (h_a, h_b) (n)} \geq \frac{16s^2 r^2}{R}, \tag{2.39} \]

\[4s^2 R \geq \prod_{\text{cyclic}} \sqrt{F_\lambda (r_a, r_b) (n)} \geq 8s^2 r, \tag{2.40} \]

\[\frac{(2R - r)(s^2 + r^2 - 8Rr) - 2Rr^2}{32R^3} \geq \prod_{\text{cyclic}} \sqrt{F_\lambda \left(\frac{\sin^2 A}{2}, \frac{\sin^2 B}{2} \right) (n)} \geq \frac{r^2}{2R^2} \tag{2.41} \]

and

\[\frac{(4R + r)^3 + s^2 (2R + r)}{32R^3} \geq \prod_{\text{cyclic}} \sqrt{F_\lambda \left(\frac{\cos^2 A}{2}, \frac{\cos^2 B}{2} \right) (n)} \geq \frac{s^2}{2R^2} \tag{2.42} \]

Proof. According to Corollary 2.3, we have the inequality

\[(x + y) (y + z) (z + x) \geq \prod_{\text{cyclic}} F_\lambda (x, y) (n) \geq 8xyz. \]

Using the substitutions

\[(x, y, z) \in \{ \{a, b, c\}, \{s - a, s - b, s - c\}, \{h_a, h_b, h_c\}, \{r_a, r_b, r_c\}, \]

\[\left(\frac{\sin^2 A}{2}, \frac{\sin^2 B}{2}, \frac{\sin^2 C}{2} \right), \left(\frac{\cos^2 A}{2}, \frac{\cos^2 B}{2}, \frac{\cos^2 C}{2} \right) \}, \]

we deduce the inequalities required.

Remark 3. From Corollary 2.7, we obtain the inequality

\[2s (s^2 + r^2 + 2Rr) \geq \prod_{\text{cyclic}} \sqrt{F_\lambda (a, b) (n)} \geq 32sRr \geq \]

\[\geq 8 \prod_{\text{cyclic}} \sqrt{F_\lambda ((s - a), (s - b)) (n)} \geq 64s a^2. \]
We consider the expression
\[G(x, y) (n) = \frac{xy (x^{n-1} + y^{n-1}) (x^{n+1} + y^{n+1})}{(x^n + y^n)^2}, \] (2.43)
where \(x, y > 0 \) and for all integers \(n \geq 0 \).

Theorem 2.9. For any \(x, y > 0 \) and for all integers \(n \geq 0 \), there are the following relations:

\[a) \left(\frac{x + y}{2} \right)^2 \geq G(x, y) (n) \geq xy \] (2.44)

and

\[b) G(x, y) (n + 1) \leq G(x, y) (n). \] (2.45)

Proof. We take \(\lambda = \frac{x}{x^n + y^n} \), for all integers \(n \geq 0 \), in inequality (2.1), because \(\lambda \in (0, 1) \), and we deduce

\[\left(\frac{x + y}{2} \right)^2 \geq \frac{xy (x^{n-1} + y^{n-1}) (x^{n+1} + y^{n+1})}{(x^n + y^n)^2} \geq xy, \]

so,

\[\left(\frac{x + y}{2} \right)^2 \geq G(x, y) (n) \geq xy. \]

To prove inequality (2.45), we can write

\[
\frac{G(x, y) (n + 1)}{G(x, y) (n)} - 1 = -\frac{(xy)^{n-1} (x - y)^2 (x^2 + xy + y^2) (x^{2n} + x^{2n-1}y + x^{2n}y^2 + \ldots + y^{2n})}{(x^{n+1} + y^{n+1})^3 (x^{n-1} + y^{n-1})} \leq 0.
\]

Consequently, we have

\[G(x, y) (n + 1) \leq G(x, y) (n). \]

Remark 4. It is easy to see that there is the sequence of inequalities

\[\left(\frac{x + y}{4} \right)^2 = G(x, y) (0) \geq G(x, y) (1) \geq \ldots \]
\[\geq G(x, y)(n - 1) \geq G(x, y)(n) \geq \ldots \geq xy. \] (2.46)

Corollary 2.10

There are the following inequalities:

\[\frac{x + y}{2} \geq \sqrt{G(x, y)(n)} \geq \sqrt{xy}; \] (2.47)

\[\frac{x^2 + y^2}{2} \geq \sqrt{G(x^2, y^2)(n)} \geq \sqrt{xy}; \] (2.48)

\[\frac{x + y + z}{2} \geq \sqrt{G(x, y)(n)} \geq \sqrt{xy} \quad \text{and} \quad \sqrt{y} + \sqrt{z} \geq \sqrt{xyz}; \] (2.49)

\[\frac{x^2 + y^2 + z^2}{2} \geq \sqrt{G(x^2, y^2)(n)} \geq xy + yz + zx; \] (2.50)

\[\frac{1}{2} \left(x^2 + y^2 + z^2 + xy + yz + zx \right) \geq \sum_{cyclic} G(x, y)(n) \geq xy + yz + zx \] (2.51)

and

\[\frac{1}{8} (x + y)(y + z)(z + x) \geq \left(\prod_{cyclic} G(x, y)(n) \right) \geq xyz, \] (2.52)

for any \(x, y > 0 \) and for all integers \(n \geq 0 \).

Proof. From Theorem 2.9, we easily deduce inequality (2.47). Using the substitutions \(x \rightarrow x^2 \) and \(y \rightarrow y^2 \) in inequality (2.47), we obtain inequality (2.48). Similarly to inequality (2.47), \(\frac{x^2 + y^2}{2} \geq \sqrt{G(x, y)(n)} \geq \sqrt{xy} \), we can write the following inequalities:

\[\frac{y + z}{2} \geq \sqrt{G(y, z)(n)} \geq \sqrt{yz} \quad \text{and} \quad \frac{z + x}{2} \geq \sqrt{G(z, x)(n)} \geq \sqrt{zx}, \]

which means, by adding, that

\[x + y + z \geq \sum_{cyclic} \sqrt{G(x, y)(n)} \geq \sqrt{xy} + \sqrt{yz} + \sqrt{zx}. \]

It is easy to see that by making the substitutions \(x \rightarrow x^2 \) and \(y \rightarrow y^2 \) in inequality (2.49), we obtain inequality (2.50). Similarly to inequality (2.44), \(\left(\frac{x + y}{2} \right)^2 \geq G(x, y)(n) \geq xy \), we obtain the following inequalities:
\[
\left(\frac{y + z}{2} \right)^2 \geq G(y, z)(n) \geq yz \quad \text{and} \quad \left(\frac{z + x}{2} \right)^2 \geq G(z, x)(n) \geq zx.
\]

By adding them, we have inequality (2.51) and by multiplying them, we obtain inequality (2.52).

Corollary 2.11. In any triangle \(ABC\), there are the following inequalities:

\[
R \geq \frac{2}{\sum_{cyclic} \sqrt{G\left(\frac{1}{h_a}, \frac{1}{h_b}\right)}(n)} \geq 2r; \quad (2.53)
\]

\[
s \geq \sum_{cyclic} \sqrt{G(s - a, s - b)}(n) \geq 3\sqrt{3}r \quad (2.54)
\]

and

\[
a^{2\alpha} + b^{2\alpha} + c^{2\alpha} \geq \sum_{cyclic} \sqrt{G(a^{2\alpha}, b^{2\alpha})}(n) \geq 3\left(\frac{4\Delta}{\sqrt{3}}\right)^{\alpha}, \quad (2.55)
\]

for any \(n \geq 0\) and for every real numbers \(\alpha\).

Proof. Making the substitutions \(x = \frac{1}{h_a}, y = \frac{1}{h_b}\) and \(z = \frac{1}{h_c}\) in inequality (2.49), we obtain

\[
\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} \geq \sum_{cyclic} \sqrt{G\left(\frac{1}{h_a}, \frac{1}{h_b}\right)}(n) \geq \frac{1}{\sqrt{h_a h_b}} + \frac{1}{\sqrt{h_b h_c}} + \frac{1}{\sqrt{h_c h_a}}. \quad (2.56)
\]

From inequality (2.13), we have

\[
\frac{1}{\sqrt{h_a h_b}} + \frac{1}{\sqrt{h_b h_c}} + \frac{1}{\sqrt{h_c h_a}} \geq \frac{2}{R},
\]

and from the identity

\[
\frac{1}{h_a} + \frac{1}{h_b} + \frac{1}{h_c} = \frac{1}{r}
\]

we deduce

\[
\frac{1}{r} \geq \sum_{cyclic} \sqrt{G\left(\frac{1}{h_a}, \frac{1}{h_b}\right)}(n) \geq \frac{2}{R}. \quad (2.57)
\]
Consequently

\[R \geq \frac{2}{\sum_{\text{cyclic}} \sqrt{G\left(\frac{1}{h_a}, \frac{1}{h_b}\right)}} (n) \geq 2r. \]

If in inequality (2.49) we take \(x = s - a, y = s - b \) and \(z = s - c \), then we deduce the inequality

\[s \geq \sum_{\text{cyclic}} \sqrt{G(s - a, s - b)} (n) \geq \sqrt{(s - a)(s - b)} + \sqrt{(s - b)(s - c)} + \sqrt{(s - c)(s - a)}. \]

But

\[\sqrt{(s - a)(s - b)} + \sqrt{(s - b)(s - c)} + \sqrt{(s - c)(s - a)} \geq 3\sqrt{3}r, \]

which means that

\[s \geq \sum_{\text{cyclic}} \sqrt{G(s - a, s - b)} (n) \geq 3\sqrt{3}r. \]

Making the substitutions \(a^\alpha, b^\alpha, c^\alpha \), and in inequality (2.49), we obtain the following inequality:

\[a^{2\alpha} + b^{2\alpha} + c^{2\alpha} \geq \sum_{\text{cyclic}} \sqrt{G(a^{2\alpha}, b^{2\alpha})} (n) \geq a^\alpha b^\alpha + b^\alpha c^\alpha + c^\alpha a^\alpha. \quad (2.59) \]

Applying the arithmetic-geometric mean inequality and Pólya-Szegő’s Inequality, \(\sqrt[\alpha]{a^{2\alpha}b^{2\alpha}c^{2\alpha}} \geq \frac{\Delta}{\sqrt{3}}, \) we deduce

\[a^\alpha b^\alpha + b^\alpha c^\alpha + c^\alpha a^\alpha \geq \left(\frac{\Delta}{\sqrt{3}}\right)^\alpha. \]

Therefore

\[s \geq \sum_{\text{cyclic}} \sqrt{G(s - a, s - b)} (n) \geq 3\sqrt{3}r. \]

Remark 5. a) Inequality (2.53) implies the sequence of inequalities

\[R \geq \ldots \geq \frac{2}{\sum_{\text{cyclic}} \sqrt{G\left(\frac{1}{h_a}, \frac{1}{h_b}\right)}} (n) \geq \frac{2}{\sum_{\text{cyclic}} \sqrt{G\left(\frac{1}{h_a}, \frac{1}{h_b}\right)}} (n - 1) \geq \ldots \]
\[
\sum_{cyclic} \sqrt{\left(\frac{1}{h_a}, \frac{1}{h_b} \right)}(0) \geq 2r \tag{2.60}
\]

b) For \(\alpha = 1 \) in inequality (2.55), we obtain
\[
a^2 + b^2 + c^2 \geq \sum_{cyclic} \sqrt{G(a^2, b^2)}(n) \geq 4\sqrt{3}\Delta, \tag{2.61}
\]

which proves Weitzenböck’s Inequality, namely
\[
a^2 + b^2 + c^2 \geq 4\sqrt{3}\Delta.
\]

Corollary 2.12. For any triangle \(\triangle ABC \), there are the following inequalities:
\[
2(s^2 - r^2 - 4Rr) \geq \sum_{cyclic} \sqrt{G(a^2, b^2)}(n) \geq s^2 + r^2 + 4Rr, \tag{2.62}
\]
\[
s^2 - 2r^2 - 8Rr \geq \sum_{cyclic} \sqrt{G((s-a)^2, (s-b)^2)}(n) \geq r(4R + r), \tag{2.63}
\]
\[
\frac{(s^2 + r^2 + 4Rr)^2 - 8s^2Rr}{4R^2} \geq \sum_{cyclic} \sqrt{G(h_a^2, h_b^2)}(n) \geq \frac{2s^2r}{R}, \tag{2.64}
\]
\[
(4R + r)^2 - 2s^2 \geq \sum_{cyclic} \sqrt{G(r_a^2, r_b^2)}(n) \geq s^2 \tag{2.65}
\]
\[
\frac{8R^2 + r^2 - s^2}{8R^2} \geq \sum_{cyclic} \sqrt{G\left(\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2}\right)}(n) \geq \frac{s^2 + r^2 - 8Rr}{16R^2} \tag{2.66}
\]
and
\[
\frac{4(R + r)^2 - s^2}{4R^2} \geq \sum_{cyclic} \sqrt{G\left(\cos^2 \frac{A}{2}, \cos^2 \frac{B}{2}\right)}(n) \geq \frac{s^2 + (4R + r)^2}{8R^2}. \tag{2.67}
\]

Proof. According to Corollary 2.10, we have the inequality
\[
x^2 + y^2 + z^2 \geq \sum_{cyclic} \sqrt{G(x^2, y^2)}(n) \geq xy + yz + zx.
\]
Using the substitutions

\[(x, y, z) \in \{(a, b, c), (s - a, s - b, s - c), (h_a, h_b, h_c), (r_a, r_b, r_c),\]
\[(\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2}, \sin^2 \frac{C}{2}), (\cos^2 \frac{A}{2}, \cos^2 \frac{B}{2}, \cos^2 \frac{C}{2})\},\]

we deduce the inequalities required.

Corollary 2.13. In any triangle ABC there are the following inequalities:

\[
\frac{1}{2} (3s^2 - r^2 - 4Rr) \geq \sum_{cyclic} G(a, b) (n) \geq s^2 + r^2 + 4Rr, \tag{2.68}
\]

\[
\frac{1}{2} (s^2 - r^2 - 4Rr) \geq \sum_{cyclic} G(s - a, s - b) (n) \geq r (4R + r), \tag{2.69}
\]

\[
\left(\frac{s^2 + r^2 + 4Rr}{8R^2}\right)^2 \geq \sum_{cyclic} G(h_a, h_b) (n) \geq \frac{2s^2r}{R}, \tag{2.70}
\]

and

\[
\frac{1}{2} \left[(4R + r)^2 - s^2\right] \geq \sum_{cyclic} G(r_a, r_b) (n) \geq s^2. \tag{2.71}
\]

Proof. According to Corollary 2.10, we have the inequality

\[
\frac{1}{2} (x^2 + y^2 + z^2 + xy + yz + zx) \geq \sum_{cyclic} G(x, y) (n) \geq xy + yz + zx.
\]

Using the substitutions

\[(x, y, z) \in \{(a, b, c), (s - a, s - b, s - c), (h_a, h_b, h_c), (r_a, r_b, r_c)\},\]

we deduce the inequalities from the statement.

Corollary 2.14. For any triangle ABC there are the following inequalities:

\[
\frac{1}{4} s (s^2 + r^2 + 2Rr) \geq \prod_{cyclic} \sqrt{G(a, b)(n)} \geq 4sRr, \tag{2.72}
\]

\[
\frac{1}{2} sRr \geq \prod_{cyclic} \sqrt{G((s - a), (s - b))(n)} \geq sr^2, \tag{2.73}
\]
\[
\frac{s^2r (s^2 + r^2 + 4Rr)}{8R^2} \geq \prod_{\text{cyclic}} \sqrt{G(h_a, h_b)}(n) \geq \frac{2s^2r^2}{R}, \quad (2.74)
\]
\[
\frac{1}{2} s^2R \geq \prod_{\text{cyclic}} \sqrt{G(r_a, r_b)}(n) \geq s^2r, \quad (2.75)
\]
\[
\frac{(2R - r) (s^2 + r^2 - 8Rr) - 2Rr^2}{256R^3} \geq \prod_{\text{cyclic}} \sqrt{G\left(\frac{\sin^2 A}{2}, \frac{\sin^2 B}{2}\right)}(n) \geq \frac{r^2}{16R^2} \quad (2.76)
\]

and
\[
\frac{(4R + r)^3 + s^2 (2R + r)}{256R^3} \geq \prod_{\text{cyclic}} \sqrt{G\left(\frac{\cos^2 A}{2}, \frac{\cos^2 B}{2}\right)}(n) \geq \frac{s^2}{16R^2}. \quad (2.77)
\]

Proof. According to Corollary 2.10, we have the inequality
\[
\frac{1}{8} (x + y)(y + z)(z + x) \geq \prod_{\text{cyclic}} G(x, y)(n) \geq xyz.
\]
Using the substitutions
\[
(x, y, z) \in \{(a, b, c), (s - a, s - b, s - c), (h_a, h_b, h_c), (r_a, r_b, r_c), (\frac{\sin^2 A}{2}, \frac{\sin^2 B}{2}, \frac{\sin^2 C}{2}), (\frac{\cos^2 A}{2}, \frac{\cos^2 B}{2}, \frac{\cos^2 C}{2})\},
\]
we deduce the inequalities required.

Remark 6. From Corollary 2.13, we obtain the inequality
\[
\frac{1}{4} s (s^2 + r^2 + 2Rr) \geq \prod_{\text{cyclic}} \sqrt{G(a, b)}(n) \geq 4sRr \geq \prod_{\text{cyclic}} \sqrt{G((s - a), (s - b))}(n) \geq 8sr^2. \quad (2.78)
\]
REFERENCES

National College ”Aprily Lajos”
3 După Ziduri Street
500026 Brașov, Romania
E-mail: benczemihaly@yahoo.com

Dimitrie Cantemir University,
107 Bisericii Române Street
500068 Brașov, Romania
E-mail: minculeten@yahoo.com

National College ”Mihai Eminescu”
5 Mihai Eminescu Street,
440014 Satu Mare, Romania
E-mail: ovidiutiberiu@yahoo.com