REFERENCES

Department of Biochemistry, Genetics and Immunology, University of vigo, Spain

The solution of OQ 1156

Kramer Alpár-Vajk

In [1] the following sequence \((a_n)_{n \in N}\) is defined: \(a_1 := 3\) and further, for all \(n \in N; \ n \geq 2; \ a_n := \) the smallest number with \(a_{n-1}\) divisors.

According to the author of [1] the first six terms are 3; 4; 6; 12; 72; 559872: It is conjectured that \(\forall n \in N^* ; \ a_n + 1\) is prime.

The first observation is that the fifth term above is false because not 72 is the smallest number with 12 divisors but 60: In light of this, the next term is 5040 and since

5041 = 71 · 71 the conjecture is wrong.

REFERENCE

43Received: 25.02.2009
2000 Mathematics Subject Classification. 11A25.
Key words and phrases. Sequences.
The solution of OQ 1141

Kramer Alpár-Vajk

The subject of OQ 1141, see [1] is to prove that the sequence \((a_n)_{n \in \mathbb{N}}\) is finite.
This sequence is defined in the following way: \(a_1 := 1\); and \(\forall n \in \mathbb{N}; a_n :=\) the smallest natural number such that for all \(k \in \mathbb{N}; k < n; a_n - a_k\) is a prime or a power of a prime. We have the first six terms: 1,3,5,8,10,12. We will show that there is no other term in this sequence, supposing the opposite and distinguishing two cases.

Case 1. Suppose that \(x_7\) exists and is even. Then

\[\{x_7 - 8, x_7 - 10, x_7 - 12\}\]
are all even and in the same time one of them is divisible by 3, thus divisible by 6 and so neither a prime nor a power of a prime.

Case 2. Suppose that \(x_7\) exists and is odd. Then

\[\{x_7 - 1, x_7 - 3, x_7 - 5\}\]
are all even and in the same time one of them is divisible by 3, thus divisible by 6 and so neither a prime nor a power of a prime.

REFERENCE

Received: 25.02.2009

2000 Mathematics Subject Classification. 11A25.

Key words and phrases. Sequences.
A logarithmic equation (OQ 19)

Gabriel T. Prăjitura and Tsvetomira Radeva

ABSTRACT. We gave a solution to the Open Question 19.

MAIN RESULT

The Open Question 19 ([1]) asked for all \(n \) such that

\[\log_2 3 + \log_3 4 + \ldots + \log_n (n + 1) = n + 1 \]

Equivalently, we are looking for all \(n \) such that

\[n + 1 \leq \log_2 3 + \log_3 4 + \ldots + \log_n (n + 1) < n + 2 \]

Let \(p \) be a natural number. Notice first that if

\[\log_2 3 + \log_3 4 + \ldots + \log_{n_0} (n_0 + 1) < n_0 + p \]

then

\[\log_2 3 + \log_3 4 + \ldots + \log_n (n + 1) < n + p \]

for all \(n \leq n_0 \), while if

\[\log_2 3 + \log_3 4 + \ldots + \log_{n_0} (n_0 + 1) \geq n_0 + p \]

then

\[\log_2 3 + \log_3 4 + \ldots + \log_n (n + 1) \geq n + p \]

for all \(n \geq n_0 \).

This is because

\[
\sum_{k=2}^{n+1} \log_k (k + 1) - \sum_{k=2}^{n} \log_k (k + 1) = \log_{n+1} (n + 2) > 1 = (n + 1 + p) - (n + p)
\]

Received: 28.02.2009

2000 Mathematics Subject Classification. 26D15

Key words and phrases. Logarithm, equation, inequality
Therefore, in order to solve the double inequality above we need to find two numbers \(n_1 \) and \(n_2 \) such that \(n_1 < n_2 \) and

\[
\log_2 3 + \log_3 4 + \ldots + \log_{n_1} (n_1 + 1) \geq n_1 + 1
\]

\[
\log_2 3 + \log_3 4 + \ldots + \log_{n_1 - 1} (n_1) < n_1
\]

\[
\log_2 3 + \log_3 4 + \ldots + \log_{n_2} (n_2 + 1) < n_2 + 2
\]

\[
\log_2 3 + \log_3 4 + \ldots + \log_{n_2 + 1} (n_2 + 2) \geq n_2 + 3
\]

When the two numbers are found, the solution is \(n_1 \leq n \leq n_2 \).

Next we will show that \(n_1 = 70 \). We must show that

\[
\sum_{k=2}^{69} \log_k (k + 1) < 70
\]

and

\[
\sum_{k=2}^{70} \log_k (k + 1) > 71
\]

which follows easily from the computation

\[
\sum_{k=2}^{69} \log_k (k + 1) = 69.998 \text{ and } \sum_{k=2}^{70} \log_k (k + 1) = 71.001
\]

Now we will show that . We must show that

\[
\sum_{k=2}^{105,555} \log_k (k + 1) < 105,557
\]

and

\[
\sum_{k=2}^{105,556} \log_k (k + 1) < 105,558
\]

which follows easily from the computation
\[
\sum_{k=2}^{105,555} \log_k (k + 1) < 105,556.9999955755
\]
and
\[
\sum_{k=2}^{105,556} \log_k (k + 1) = 105,558.0000037657
\]
Therefore
\[
[\log_2 3 + \log_3 4 + \ldots + \log_n (n + 1)] = n + 1
\]
if and only if \(70 \leq n \leq 105,555\).
We will end with some comments about the problem.
The series
\[
\sum_{n=2}^{\infty} (\log_n (n + 1) - 1)
\]
is divergent. To see this notice that
\[
\log_n (n + 1) - 1 = \frac{\ln (n + 1)}{\ln n} - 1 = \frac{\ln (n + 1) - \ln n}{\ln n}
\]
By the Mean Value Theorem applied to the function \(\ln x\) on the interval \([n, n+1]\), there is \(k_n \in (n, n+1)\) such that
\[
\ln (n + 1) - \ln n = \frac{\ln (n + 1) - \ln n}{(n + 1) - n} = \frac{1}{k_n} > \frac{1}{n + 1}
\]
Therefore
\[
\log_n (n + 1) - 1 > \frac{1}{(n + 1) \ln n}
\]
and since
\[
\sum_{n=1}^{\infty} \frac{1}{(n + 1) \ln n}
\]
is a well known divergent series, the Comparison Test implies the divergence of the series we considered above. One of the consequences of this fact is that for every \(k \geq 1\) the equation
\[\log_3 3 + \log_3 4 + \ldots + \log_3 (n + 1) = n + k \]

has only a finite number of solutions. From our computation here it actually follows that there are solutions for every \(k \geq 0 \). To find the exact number of these solutions turns out to be a very difficult technical problem since, as we showed above, for \(k = 1 \) we already need 7 decimals of accuracy.

REFERENCE

State University of New York
gprajitu@brockport.edu

State University of New York
trade1@brockport.edu
AIMS AND SCOPE

Octogon Mathematical Magazine publishes high quality original research papers and survey articles, proposed problems, open questions in all areas of pure and applied mathematics.

MANUSCRIPT SUBMISSION

Manuscripts should be written in English, following the style of our journal in what concerns the technical preparation of the papers.

The manuscripts must be prepared electronically in $L^4T_E\X$ macro package and document format B5, and should be submitted either in two paper copies and .tex file and .pdf file on a CD, and by E-mail. Please do not use any special definition, layout, labels and cross-references.

The manuscripts will include the full address of the author(s), with E-mail address(es), and abstract not exceeding 150 words, 2000 Mathematics Subject Classification, Key words and phrases.

In case there are two or more authors, please indicate the one to whom the correspondence should be directed.

The submission of a manuscript for publication in our journal implies that the paper has not been published, nor is being considered for publication elsewhere and this is also viewed as the author’s copyright transfer in case the manuscript is accepted. The galley proofs are usually sent to the authors.

References should be listed in alphabetical order; the following reference style should be used:

[1] Rudin, W., Function Theory in the Unit Ball of \mathbb{C}, Springer Verlag, New York.

SUBSCRIPTIONS AND LIBRARY EXCHANGE

The annual subscription (for two issues) is 100 Euro (or 115 USD). Please make the deposits on the following accounts:

Mihály Bencze:

Bank accounts: USD: RO79RZBR000006000478263
 EUR: RO47RZBR0000060005330861
 Raiffeisen Bank, 505600 Săcele, Piața Libertății 20, Romania