LOGISTICS STRATEGIES AND TOOLS

Elke Glistau¹, Michael Schenk², Norge Isaías Coello Machado³
Dr.-Ing.¹, Univ.-Prof. Dr.-Ing. habil. Prof. E. h. Dr. h. c. mult.², Prof. Dr.-Ing. Dr. h. c.³

Otto-von-Guericke-University Magdeburg, ILM, Magdeburg, Germany¹,²
Central University „Marta Abreu“ of Las Villas, Santa Clara, Cuba³
E-mail: elke.glistau@ovgu.de

ABSTRACT

New trends like the development of navigation, information & communication technologies permanently change the possibilities, the goals and the forms of logistics strategies. Today companies can hardly succeed without taking the broad range of logistics strategies into account. Logistics strategies are also used for the company's positioning in the market. The support of up- and downstream members along the complete supply chain is very important. The successful introduction of a logistics strategy in a company requires methodical approach for the selection of the appropriate solutions. Choosing the right solution requires an overview of the wide range of possible management instruments. To give the reader an overview of selected management tools and logistics tools to improve processes, some of them are presented and are explained in this paper. The combination of the VRIO model, the identification technologies types and the characterization of resources allows the definition of logistics strategies, standard procedures and sets of logistics activities.

KEYWORDS

Strategic management tools, logistics tools to improve processes, logistics resources, VRIO-analysis

1. MANAGEMENT INSTRUMENTS

Different studies identify the most important management instruments. Strategic Planning, CRM, Employee Engagement Surveys, Benchmarking, Balanced Scorecard, Core Competencies, Outsourcing, Change Management, Supply Chain Management, Mission, Vision Statements and others are important management instruments (Cp. [1]). The first named “Strategic Planning” is the basis of strategic management. It includes a great number of methods, instruments and tools, which support the analysis, the design, the evaluation, the implementation and the control of strategies. Figure 1 shows some of them to illustrate the huge number of possibilities to support the strategic management, also in logistics.

DOI: 10.26649/musci.2015.027
2. LOGISTICS TOOLS TO IMPROVE LOGISTICS PROCESSES

VÖLKER and NEU [13], p. 31 identify eleven collaborative logistics concepts. These are JIT, Quick Response, Continuous Replenishment, VMI, Cross Docking, ECR, Collaborative Planning, Forecasting and Replenishment, Electronic Market, Tracking and Tracing, SCM and CSCM. However, a great number of other concepts (e.g. 3PL to 5PL, Sourcing strategies, Keiretsu, Kanban, cp. [13]) is also used in the logistics area but is not among the so-called logistics concepts. New strategies like Green logistics and sustainability are not discussed in this publication.

In summary there are not many publications, which deal with logistics tools and instruments in a strategic mind. The majority of publications describe individual selected tools and their usage for specific questions and scopes. That is why some general overviews of classic tools in logistics have been developed. Figure 2 shows the overview of logistics tools to improve logistics processes. These are application oriented instruments and tools. The tools were assigned into the following groups: analysis, evaluation, design, implementation, controlling and interpretation according to their application possibilities.
Tools for the development of objectives
- Benchmarking
- Matrix procedure (weight of logistics objectives)
- Potential analysis
- Forecasting
- Situation analysis
- Scenario planning technique
- Cause analysis

Tools for logistics process analysis

Resource analysis
- Inventory analysis
- Area analysis
- Cost analysis
- Performance analysis
- Utilization analysis
- Structure analysis
- Time analysis

Other tools for the analysis
- Workflow analysis
- Business Process
- Reengineering
- Benchmarking
- Throughput time analysis
- Cluster analysis
- Business process analysis
- Life cycle analysis
- VRIO-Analysis
- Network technique
- PDCA-Analysis
- SWOT-Analysis
- TOWS-Analysis
- Value stream analysis
- Environmental analysis
- Business analysis

Tools for the evaluation of logistics processes

Arguments
- Opportunities-Risk-analysis
- Delphi method
- Strength/weaknesses analysis
- SWOT analysis

Time
- Experience curve
- Exponential smoothing
- S-curve
- Scenario technique
- Trend forecasting
- Environmental development

Groups
- Cluster analysis
- Hierarchical grouping

Engineering morphology
- Pareto method
- Portfolio technique
- Check lists
- KO procedure
- Measurement of customer preferences
- Quality Function Deployment
- Degree of fulfillment
- Performance factor analysis
- Proceeds-performance-analysis
- Benefit analysis
- Benefit-cost-analysis
- Usefulness analysis

Risk
- Failure tree analysis
- FMEA or FMECA
- Markoff-Verfahren
- Parts-Count-Method
- Parts-Stress-Method

Sensitivity
- Sensitivity analysis
- System-FMEA

Causality
- Tree diagram
- Network technique
- Problem-decision-planning
- Cause-effect-diagram

Tools for the design and implementation of new logistics processes

Logistics quality
- 3A-Reporting
- 5S-Method
- 8D-Reporting
- FMEA
- Kaizen
- CIP
- Poka Yoke
- Six Sigma
- 635-Method
- Brainstorming
- Ishikawa-Diagram
- Mindmapping

Tools for the logistics controlling

Logistics cost
- Overhead cost analysis
- Planned cost accounting
- Activity based costing
- Simultaneous Costing
- Total Cost of Ownership
- Zero Based Budgeting
- Balanced Scorecard
- Break-Even-Analysis
- Logistics KPI

Fig. 2

Some important logistics tools to improve processes
(Based on [14], [15], [16], [17], cp. [12])
3. STRATEGY AND ANALYSIS FOR LOGISTICS RESOURCES

The VRIO framework (Cp. [18]) is neither often applied nor well known in the logistics area. The VRIO framework is the core piece of a resource based companies view. (Cp. [19], [20], [21]) The considered criteria are value, rarity, imitability and organization. VRIO is the acronym for a valuable, rare, inimitable and organized resource. The VRIO model is the foundation of a specific internal analysis. Table 1 presents an overview on the method. It is possible to compare company resources with those of competitors by using the VRIO model. This gives hints for the development of a competitive strategy and eliminate relative weaknesses.

What is a resource according to VRIO? It is anything that the company owns or does that creates value for customers. Resources are e.g. equipment, technologies, money, area, energy, human resources and time.

The procedure to apply the VRIO model has the following steps.
- List of all resources and prioritization.
- Comparison of the company resources with those of competitors and definition of the four criteria value, rarity, inimitability and organization.
- Definition of the competitive implications.
- Definition, realization and controlling of activities to improve and maximize the competitive advantage.

The VRIO idea can also be used to compare, contrast and evaluate logistics concepts (e.g. Kanban, Just in Time, Just in Sequence, Vendor Managed Inventory).

<table>
<thead>
<tr>
<th>Valuable?</th>
<th>Rare?</th>
<th>Difficult to imitate?</th>
<th>Supported by organization?</th>
<th>Competitive Implications</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Competitive Disadvantage</td>
<td>Below Normal</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>-</td>
<td>Competitive Parity</td>
<td>Normal</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>-</td>
<td>Temporary Competitive Advantage</td>
<td>Temporary Above Normal</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Unused Competitive Advantage</td>
<td>Above Normal</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Sustained Competitive Advantage</td>
<td>Sustainable Above Normal</td>
</tr>
</tbody>
</table>

Value: New resources should be developed and current resources should be improved to offer a high value to the customers.
Rarity: Resources should be unique in comparison to other competitors.

Inimitability: Resources should be difficult to imitate by other competitors.

Organization: All valuable, rare and inimitable resources should be effective used to generate the most profit out of them.

New technologies are an important resource in this mind. All major industrial nations are searching, based on the same activities, for new key-technologies to get a long-time competitive advantage. The evaluation of technologies should be done in short time cycles to process the decision for investment in research and development as early as possible but also not too early. Therefore, the part of own development, the part of co-operation with others or the buying rate has to defined. Decisions on the role as a pioneer as an early follower or as a later follower should be made.

Therefore the following evaluation procedure is recommended:

- Evaluation of the potential and benefit of a new technique / technology.
- Evaluation of the level of maturity of a new technique / technology.
- Evaluation of the expenses (costs) for research and development in the next months or years for this technology.
- Evaluation of the time span for the use of a new technique / technology.
- Evaluation of the prospective durability of use.

Table 2 shows some technologies that are relevant for the information flow. Well-known and new strategic procedures and software-tools are used to evaluate the tasks to be completed. The SWOT/TOWS-Matrix and the S-curve are such well-known methods. New procedures evaluate especially the energy efficiency.

<table>
<thead>
<tr>
<th>Type of technology</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Future technology</td>
<td></td>
</tr>
<tr>
<td>- Very hard to obtain</td>
<td></td>
</tr>
<tr>
<td>- Market value may not be quantified</td>
<td></td>
</tr>
<tr>
<td>Recording the microscopic surface by using laser diffused light</td>
<td></td>
</tr>
<tr>
<td>B Key technology</td>
<td></td>
</tr>
<tr>
<td>- Hard to obtain</td>
<td></td>
</tr>
<tr>
<td>- Basis of competitive advantages</td>
<td></td>
</tr>
<tr>
<td>RFID, Holograms, special security characteristics, electronic tendering, AR (Augmented Reality)</td>
<td></td>
</tr>
<tr>
<td>C Basic technology</td>
<td></td>
</tr>
<tr>
<td>- Simple to obtain</td>
<td></td>
</tr>
<tr>
<td>- Necessary basis of logistics</td>
<td></td>
</tr>
<tr>
<td>Barcode, Data Matrix Code, OCR</td>
<td></td>
</tr>
</tbody>
</table>

Some examples are in context with RFID-technologies and quality control:

- Creation of shipping units and transportation units
- Control of the distribution processes
- Access control, e.g. in special areas of warehousing
- Identification of boxes e.g. returnable containers
- Traceability of products and documentation
- Documentary evidence of origin and protection against imitation
The technologies of information logistics are combined with technologies of the quality control of processes.

The characterization of resources according to logistics objectives is an important step to improve their effective use. Typical criteria are area, volume, capacity, cost, energy, environment, quality, reliability, robustness, staff, technological level and time. Figure 3 gives an example of characterization of operating resources.

![Diagram of operating resources](image)

<table>
<thead>
<tr>
<th>Area, Volume:</th>
<th>Area intensive, volume intensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity:</td>
<td>Bottlenecks, idle capacity resources</td>
</tr>
<tr>
<td>Cost:</td>
<td>Cost driver, capital intensive</td>
</tr>
<tr>
<td>Energy:</td>
<td>Energy intensive</td>
</tr>
<tr>
<td>Environment:</td>
<td>Critical to the environment</td>
</tr>
<tr>
<td>Quality:</td>
<td>Fault locations</td>
</tr>
<tr>
<td>Reliability/ robustness:</td>
<td>Unplanned availability locations, redundancies, hazard points</td>
</tr>
<tr>
<td>Staff:</td>
<td>Staff intensive resources</td>
</tr>
<tr>
<td>Technological level:</td>
<td>Basic technology, key technology, future technology</td>
</tr>
<tr>
<td>Time:</td>
<td>Long term utilization, resources with time delay</td>
</tr>
</tbody>
</table>

Fig. 3
Characterization of operating resources

Single value, matrix and cluster analyses can be used to design groups of resources with homogeneous features. These groups with specific, homogeneous resources can be handled by specific logistics strategies, standard procedures and sets of activities.

The combination of the VRIO model, the identification of technologies types and the characterization of resources gives the possibility to holistic design and optimize resources in logistics.
REFERENCES

