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1 Static Electric Field 
 

1.1 Electric Interaction 
 

1.1.1 Basic electric experiments: 
 
In ancient times Thales discovered that amber rubbed with fur or a piece of glass rubbed with 
a silk cloth would attract light objects such as small bits of paper. As a result of rubbing, 
materials may acquire a new property that is called electricity. These materials are electrified 
or charged with electricity. 
Experiments show: 

- two electrified piece of glass repel each other 
- two electrified piece of amber repel each other 
- an electrified piece of glass and an electrified piece of amber attract each other 

 
Due to experiments, there are two kinds of electrified states: 

- glasslike – called positive 
- amberlike – called negative 

Two bodies with the same kind of electrification (either positive or negative) repel each other, 
but if they have different kinds of electrification (one positive and the other negative), they 
attract each other. 
In neutral state the material contains equal amounts of positive and negative electricity. 
The experiments show that the electrified state can be transferred from one body to another, 
by taking them into contact. As there is electric interaction between the charged or electrified 
objects when they are not in contact, we can say that this interaction is carried out through an 
electric field. 
 
To characterize the state of electrification of a body we define the electric charge (simply 
charge) represented by a symbol Q. 
The electric charge characterizes the participation of the electrified objects in the electric 
interaction. 
Place a unit charge particle into electric field and measure the force acting on it. 
Place another charge into the same field and measure the force on it again. We say that its 
charge is k-times as the unit charge if it experiences a force that is k-times as the force acting 
on the unit charge. 
Since there are two kinds of electrification, there are also two kinds of electric charge: 
positive and negative. 
 
The fundamental building blocks of ordinary matter are the negatively charged electrons, the 
positively charged protons and the electrically neutral neutrons. The negative charge of the 
electron has the same magnitude as the positive charge of the proton. These three particles are 
arranged in the same general way in all atoms. The protons and neutrons form the nucleus 
which has a positive charge. Its measurement is about 10-14 m. Outside of the nucleus; at 
distances of the order of 10-10 m are the electrons. In a neutral atom the number of electrons 
equals the number of protons in the nucleus. The net electric charge of such an atom is zero. If 
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one or more electrons are removed, the remaining structure is called positive ion. A negative 
ion is an atom that has gained one or more electrons. 
 
When a piece of bulk matter is electrically charged, this is almost always accomplished by 
adding or removing electrons. When we speak of the charge of a body, we always mean its 
net charge, which is always a very small fraction of the total positive or negative chare in the 
body. 
The body is called neutral if the net charge is zero. 
 
In some materials primarily in metals some of the atomic electrons are not bound to any 
particular atom but are free to move macroscopic distances within the material. These 
materials are called conductors. 
Conductors permit the passage of charge through them. In glass, wood, paper, plastics… there 
are no free electrons, the electron can move only microscopic distances within a molecule. 
These materials are called insulators or dielectric.  
There are some intermediate materials such as carbon, germanium, and silicon. They are 
called semiconductors.  
 
The Earth is a good conductor and it acts as a giant reservoir to charge or discharge an object. 
If a body is connected to the ground with a metal (conductor) wire, it is called grounded.  
 
Franklin was who discovered that in any process in which a positive charge is produced, an 
equal amount of negative charge must be produced at the same time. 
For example: when plastic is rubbed with fur, opposite charges appear on the two materials. 
The electric charge is not created but is transferred from one body to another. The plastic 
acquires extra electrons, so it is negative, these electrons are taken from the fur, which this 
acquires a net positive charge. 
The electric charge is conserved. The algebraic net charge of an isolated system of charges 
does not change. Charge can be transferred from one body to another but it cannot be created 
or destroyed. 
 

1.1.2 The Electric Field 
 
Many phenomena are most conveniently described in terms of field concept. Any region in 
space in which an electric charge experiences a force is called electric field. Consider a 
charged body at rest in our reference system. This charged body sets up an electric field in the 
space. 

charged
body

P
q

( )F P

 
Put a point charge q into the point P and measure the force acting on it. Due to experiences 
the force acting on the point charge q is proportional to its charge. The ratio of the two 
physical quantity is independent of the point charge and depends only on the field: 

( ) ( )F P
E P

q
=  
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By definition the intensity of the electric field numerically equals the force acting on a unit 
point charge at a given point of the field. The direction of the vector E coincides with that of 
the force acting on a positive charge. 
Unit of the electric field: 

[ ] 1 NE
C

=  

When several charges are present the resultant electric field at any point is the vector sum of 
the electric fields produced at the point by each charge. This statement expresses the principle 
of superposition or independent action. 

1 2 ...
n

n i
i n

E E E E E
=

= + + + =∑  

 

1.1.3 Coulomb’s law, Force between Point Charges 
 
In 1785 Coulomb studied the field due to a point charge. A point charge is defined as a 
charged body whose dimensions may be disregarded in comparison with the distances from 
this body to the other bodies carrying electric charge. 
 
The Coulomb’s Law states that a point charge Q at rest sets up a central and conservative 
electric field around itself. The centre of the field is the point charge. In this electric field the 
force acting on a point charge q is proportional to the magnitude of the two point charges and 
inversely proportional to the square of the distance between them. The direction of the force 
coincides with the straight line connecting the charges. 

+Q

qr
re

F

 

2 r
qQF k e
r

=  

re  is the unit vector directed from Q to q, and k > 0 constant. 
The value of the proportionality constant depends only on the choice of the charge unit. If the 
unit of charge is: 

1 coulomb = 1C 
2

9
29 10 Nmk

C
= ⋅  

1 coulomb is the magnitude of the point charge if the force between two identical point 
charges equals 99 10 N⋅  when they are 1 m apart. 
The base unit of the electricity is the unit of the electric current. It means that the unit of 
charge is a derived unit. A coulomb is defined as the amount of charge that flows through any 
cross section of a wire in 1 second if there is a steady current of 1 Ampere in the wire. 

1 1C As=  
The proportionality factor: 

0

1
4

k
π ε

= , 
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0ε  is called the permittivity constant of vacuum. 
2

12
0 28,854 10 C

Nm
ε −= ⋅  

 

1.1.4 Electrostatic field 
 
The field due to a point charge at rest is conservative and the principle of superposition is 
valid for electric fields. That is the electric field due to any charge distribution, at rest in our 
inertial system, is conservative field. This field is called electrostatic field. 
The work done by the field on a point charge as it moves from point 1 to point 2 is: 

2 2 2

1,2
1 1 1

W F dr qE dr q E dr= ⋅ = ⋅ = ⋅∫ ∫ ∫  

The voltage between two points: 
2

1,2
1,2

1

W
U E dr

q
= = ⋅∫  

The voltage or potential difference depends only on the field and the two points but 
independent of the charge. The potential difference or voltage between two points in an 
electric field is the work done by the field on a unit positive charge as it moves between the 
points. 
The unit of potential difference: 

[ ] 1 1 1
1

JU volt V
C

= = =  

As the electrostatic field is conservative the elementary work done by the field is the negative 
total differential of the potential energy: 

W F d r dVδ = ⋅ = −  
qE dr dV⋅ = −  

VE dr d
q

⎛ ⎞
⋅ = − ⎜ ⎟

⎝ ⎠
 

E d r dU⋅ = −  
VU
q

=  

This physical quantity U is called potential. The potential is equal numerically to the potential 
energy of a unit positive test charge. The potential is accurate to an arbitrary additive constant. 
According to the agreement the potential is chosen to be zero at the infinity. 

2 2

1,2 1 2
1 1

U E dr dU U U= ⋅ = − = −∫ ∫  

In electrostatic field the potential difference depends only on the initial and final points and 
equals to the negative difference of the potentials, (potential of initial point – potential of final 
point). 
The potential of an arbitrary point P: 

dU E d r− = ⋅  

P P

dU E dr
∞ ∞

− = ⋅∫ ∫  
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( ) ( )
P

U P U E dr
∞

− ∞ = ⋅∫  

if ( ) 0U ∞ =  

( )
P

U P E dr
∞

= ⋅∫  

The potential numerically equals the work done by the field on a unit positive charge when it 
is moved from the point P to infinity. 
 
In electrostatic field the work done on any closed path is zero that is the potential difference is 
also zero. This is the integrated form of the first law of electrostatics. 

0
g

E dr⋅ =∫  

The circle on the integral sign indicates that integration is performed along a closed contour. 
Apply the Stokes’s theorem. The line integral of a vector around an arbitrary contour g equals 
the flux of the curl of the vector through the arbitrary surface A surrounded by the given 
contour. 

( ) 0
g A A

E d r curlE d A E d A⋅ = ⋅ = ∇× ⋅ =∫ ∫ ∫  

This condition must be observed for any surface resting on the contour g, this is possible only 
if: 

0curlE =  
or:  

0E∇× =  
This is the differential form of the first law of electrostatics. 
 
As the force related to the potential energy in conservative field: 

/ :F grad V q= −  
E grad U= −  

The intensity of the electric field is the negative gradient of the potential.  
 
The locus of points have the same potential is called equipotential surface. 

dU E d r− = ⋅  
if constantU =  0dU =  

0E d r⋅ =  
This is the differential equation of the equipotential surface. The elementary arc vector d r  is 
along the surface. As the dot product of two vectors is zero, the vectors are perpendicular. The 
electric field intensity vector is always perpendicular to the equipotential surface. 
 

1.1.4 Electric field and potential due to a point charge 
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+Q

r
re

E

 
FE
q

=  

2 r
qQF k e
r

=  

The field: 

2 r
QE k e
r

=   

2 r
QdU E dr k e dr
r

− = ⋅ = ⋅  

2
r r

QdU k dr
r

∞ ∞

∗
∗

− =∫ ∫  

( ) ( ) 1

r

U r U kQ
r

∞

∗

⎡ ⎤
− ∞ = −⎢ ⎥

⎣ ⎦
 

The potential: 

( ) QU r k
r

=  

 

1.1.5 Electric dipole 
 
The electric dipole is positive and a negative charge of equal magnitude Q placed a distance l 
apart. The electric dipole moment vector is defined as: 

p Ql=  
The direction of l is from the negative to the positive charge. 

+Ql

-Q  
Consider now a very small dipole (point like dipole), suppose that 910l m−≈ . This is the size 

of a molecule. Determine the torque acting on this dipole when it is placed in an external 
electric field. 

+Ql

-Q C

F QE− = −
( )F Q E d E+ = +

E d E+
E

 
F QE− = −  

( )F Q E d E+ = +  
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The torque (the momentum of force) about point C 

( ) ( )2 2 2
C

l l lM QE Q E d E Ql E Q d E p E= − × − + × + = × + × = ×  

due to the point like dipole l  is very small and d E  is also negligible. 

CM p E= ×  
The torque is zero if p E , that is if the dipole turned into the direction of the field. The 
torque is tending to align the electric dipole. 
If E p↑↑ then 0CM = the equilibrium is stable, if E p↑↓  then 0CM = , but the equilibrium 
is unstable. 
 

1.2 Electric polarization, Electric field in dielectrics 
 
Dielectrics or insulators are defined as substances not capable of conducting an electric 
current. Consider now a molecule of a dielectric; this is a system with a total charge of zero. 
Take the analogy of the centre of mass and introduce the centre of charge: 

i i
C

i

Q r
r

Q
= ∑
∑

 

In case of a molecule we can define the centre of charge for the positive charge and for the 
negative charge as well. 
 

- In symmetrical molecule the centre of the positive and negative charges coincide in 
the absence of an external field. Such molecules have no intrinsic dipole moment and 
are called non-polar molecules: H2, O2, N2 ….. 

- In asymmetrical molecules the centre of positive and negative charges are displaced 
relative to each other. So these molecules have an intrinsic dipole moment, and are 
called polar molecules: CO, HN, HCl, H2O … 

 

1.2.1 Induced polarization 
 
Under the action of an external electric field the centre of charges in a non-polar molecule 
become displaced relative to one another, the positive ones in the direction of the field, the 
negative ones against the field. So the molecule acquires a dipole moment. In case of a polar 
molecule the dipole moment increases. 
 

1.2.2 Polarization due to alignment 
 
The action of an external field on a polar molecule consists mainly in tending to rotate the 
molecule so that its dipole moment is arranged in the direction of the field. 
 
In the absence of an external electric field the dipole moments of the molecules of a dielectric 
either equal to zero (non-polar molecules) or are distributed in space by directions chaotically 
(polar molecules) so the total dipole moment of a dielectric equals zero. 
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A dielectric becomes polarized under the action of an external electric field. To characterize 
the polarization of a dielectric at a given point, introduce the polarization vector P . 
Suppose that pΔ  is the electric dipole momentum of the volume VΔ . 

pΔ

VΔA

 
Then: 

0
lim
V

pP
VΔ →

Δ
=

Δ
 

The polarization of isotropic dielectrics is associated with the field strength at the same point 
by the next relation: 

0P Eχ ε= , 

where χ  is a quantity independent of E  and called electric susceptibility of a dielectric.  
 
χ  is a dimensionless quantity. 
In case of vacuum and conductor: 

0χ =  
In dielectrics: 

0χ >  
 
Calculations of the electric fields is often simplified if we introduce an auxiliary quantity 
which is the linear combination of the electric field E  and the polarization vector P . This 
linear combination is called electric displacement or electric induction vector. 

0D E Pε= +  

If we use the first approaching, that E  is proportional to the polarization: 

0P Eχ ε=  

0 0D E Eε χ ε= +  

( )0 1D Eε χ= +  

0 rD Eε ε=  

D Eε=  
The dimensionless quantity 1rε χ= +  is called the relative permittivity of a medium, 0 rε ε ε=  
is called absolute permittivity. According to this equation in homogeneous isotropic dielectric 
the vector D  is proportional to the vector E . 
 

1.2.3 Flux of the Electric Induction, Gauss’s Law 
 
To visualize the electric field patterns we use the lines of induction. The lines of induction are 
drawn so that a tangent to them at every point coincided with the direction of the vector D . 
According to the agreement, the lines of induction are drawn so that the number of lines on 
unit perpendicular cross section area is equal to the magnitude of D . 



Electrodynamics and Optics GEFIT252  Lecture Summary 

 9 

t

line of induction

D

 
 
The electric flux refers always to a surface with given orientation, and equals to the total 
number of lines of induction passing through the surface. 

d s

d A

+1 contribution

-1 contribution

 
The contribution is +1 if the direction of the surface vector d A  is the same as the direction of 
the line of induction. The contribution is –1 in opposite case. 
 
The elementary outward flux: 

dA D

dA n dA=α

cosdA α
 

cosd D dA D d AΨ α= = ⋅  

( )d A dAn=  

The total outward flux is the integral of D  over a surface: 

A

D d AΨ = ⋅∫  

Units: 

[ ] [ ] 21 CD P
m

= =  that is [ ] 1CΨ =  

 
Consider a point charge in vacuum, and determine the flux through a sphere: 

Q

r

D

dA
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2
0

1
4

r
QE e
rπε

=  

0D Eε=  

24
r

QD e
rπ

=  

0
2

2 2 4
4 4

r r

A A

Q QD d A e e dA r Q
r r

Ψ π
π π

= ⋅ = ⋅ = =∫ ∫  

A

D d A Q⋅ =∫  

Easy to realize that this connection is valid for any closed surface if Q is enclosed. And it is 
valid at the presence of any substance. The above equation is called Gauss’s Law or the 
Second Law of electrostatics. 
The flux of the electric induction through a closed surface equals the algebraic sum of the 
charges enclosed by this surface. Denote by V the volume enclosed by the closed surface: 

V
A

D d A Q⋅ =∫  

− positive charges are the sources of the field 
− negative charges are the sinks of the field 

 
Let’s suppose that the charge is distributed in space continuously with a finite volume density. 

QΔ

VΔP
V A  

The volume charge density ρ  is defined as: 

( )
0

lim
V

QP
V

ρ
Δ →

Δ
= ⋅

Δ
 

The unit is: 

[ ] 31 C
m

ρ =  

The enclosed charge: 

V
V

Q dVρ= ∫  

A V

D dA dVρ⋅ =∫ ∫  

Replacing the closed surface integral with a volume one in accordance with the Gauss-
Ostogradsky theorem: 

A V

D dA D dV⋅ = ∇ ⋅∫ ∫  

V V

D dV dVρ∇⋅ =∫ ∫  

( ) 0
V

D dVρ∇⋅ − =∫  

This relation must be true for any volume, so the integrand must be zero: 
D ρ∇⋅ =  
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This is the differential form of the Gauss’s Law. 
 
Let’s introduce the line and the surface charge density. 
If the charge is distributed along a line, the line charge density is defined as: 

QΔ

P
+

sΔ+

+
+

+
+

 

( )
0

lim
s

QP
s

λ
Δ →

Δ
=

Δ
 

If the charge is distributed along a surface the surface charge density is defined as: 
QΔ

P
+ AΔ ++

+
+

+

 

( )
0

lim
A

QP
A

σ
Δ →

Δ
=

Δ
 

Units: 

[ ] 21 C
m

σ =  

[ ] 1C
m

λ =  

 

1.3 The two fundamental Laws of Electrostatics and the Possion equation 
 
Integral forms: 

0
g

V
A

E dr

D dA Q

⋅ =

⋅ =

∫

∫
 

Differential or local forms: 
0E

D ρ

∇× =

∇⋅ =
 

Consider now a homogeneous isotropic dielectric: D Eε=  and ε  is constant. 
0E E U∇× = → = −∇  

( )D Eρ ε ρ∇⋅ = →∇⋅ =  

Eε ρ∇ ⋅ =  
( )Uε ρ∇ ⋅ −∇ =  

2U ρ
ε

∇ = −  

This equation is called Possion equation. 
 
Laplace operator: 
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2 2 2
2

2 2 2x y z
∂ ∂ ∂

∇ = Δ = + +
∂ ∂ ∂

 

The Poisson equation is a second order partial differential equation for the potential 
distribution ( ), ,U x y z , but we have to know the charge distribution in the space ( ), ,x y zρ , 
the permittivity and the so called boundary conditions. 

O
x

y

z

r′

dV

( ), ,P x y z

V

( ), ,P x y z′ ′ ′ ′

r

R′
 

dQ dVρ=  

( ) ( ) ( )2 2 2' ' ' 'r R r x x y y z z= − = − + − + −  
1 1

4 4
dQdU dV
r r

ρ
πε πε

= =  

( ) ( )
( ) ( ) ( )2 2 2

', ', ' ' ' '1 1
4 4 ' ' 'V V

x y z dx dy dz
U P dV

r x x y y z z

ρρ
πε πε

= =
− + − + −

∫ ∫  

The integration must be taken for the volume of the charge distribution. 
 

1.3.1 Boundary conditions at the interface between two different media 
 
Let’s consider the interface between two dielectrics with the permittivity 1ε  and 2ε . Choose 

an arbitrary curve on the interface ( )AB . 

Set up a closed curve A1 A2 B1 B2 and apply the first law of electrostatics: 

2
1

A
P B

1A

2B

1B
1P

2A
2P

 

g

E dr 0⋅ =∫  

1 2 2 2 2 1 11

0
A A A B B B B A

E dr E dr E dr E dr⋅ + ⋅ + ⋅ + ⋅ =∫ ∫ ∫ ∫  

Approach P1 and P2 points to point P and the 1 1A B  and 2 2A B arcs to AB . 

1 2

0
A A

E dr⋅ →∫ , and 
1 2

0
B B

E dr⋅ →∫  

because the intervals of the integrations tend to zero. 
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2 2

2
A B AB

E dr E dr⋅ → ⋅∫ ∫  

2E  is the electric field at the interface in the second medium. 

1 1

1 1
B A BA AB

E dr E dr E dr⋅ → ⋅ = − ⋅∫ ∫ ∫  

1E  is the electric field at the interface but in the first medium. 
We have: 

( )2 1 0
AB

E E dr− ⋅ =∫  

but dr t ds=  where t  a tangential unit vector 

( )2 1 0
AB

E t E t ds⋅ − ⋅ =∫  

2 1t tE E=  
 
That is the tangential components of the electric field at the interface between two media are 
the same (continuous). 
 
Let’s consider now the interface between two different dielectrics. Set up a closed curve on 
this interface and draw the normal at all points of the curve. Finally make a closed surface. 
Denote the surface of the superficies by AP and the top surface by A2 the bottom one by A1. 
 

P
1A

2A
PA

2
1

2

1

A
P

1A

2A
n

 
For the closed surface apply the second law of electrostatics: 

V
A

D dA Q⋅ =∫  

1 2A Ap A V A

D dA D dA D dA dV dAρ σ⋅ + ⋅ + ⋅ = +∫ ∫ ∫ ∫ ∫  

Approach A1 and A2 surfaces to A. It means that 0PA →  and 0V →  

0
PA

D dA⋅ →∫  ,and 0
V

dVρ →∫  

1

1 1
A A A

D dA D dA D ndA⋅ → ⋅ →− ⋅∫ ∫ ∫  

2

2 2
A A A

D dA D dA D ndA⋅ → ⋅ → ⋅∫ ∫ ∫  

1D  is the induction at the interface in the first medium, 2D  is the induction at the interface in 
the second medium. 

1 2
A A A

D n dA D n dA dAσ− ⋅ + ⋅ =∫ ∫ ∫  

( )2 1 0n n
A

D D dAσ− − =∫  

and 2 1n nD D σ− =  
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That is the normal component of the electric induction at the interface between two media is 
not continuous. Its jumping is just the surface charge density. If 0σ =  the normal component 
is continuous. 
 
 

1 2
A A A

D n dA D n dA dAσ− ⋅ + ⋅ =∫ ∫ ∫  

( )2 1 0n n
A

D D dAσ− − =∫  

and 2 1n nD D σ− =  
 
That is the normal component of the electric induction at the interface between two media is 
not continuous. Its jumping is just the surface charge density. If 0σ = , the normal component 
is continuous. 
 

1.2 Conductors in electrostatic field 
 
An initially uncharged insulated conductor must have 0E =  for all internal points. If this 
were not so, electrical forces would act on the free charge carriers producing motion of these 
charges. In electrostatics the charge carriers must be at rest so inside the conductor 0E = . 
If the two points and the curve of integration is inside the conductor: 

2

12
1

0U E dr= ⋅ =∫ , or 

12 0U =  
The potential difference between any two points is zero. The conductor is equipotential. 
In the conductor 0 0tE E= → =  As the tangential component of the electric field intensity at 
the interface between two media is continuous, it means that in the surrounding insulator 

0tE = , that is the electric field is normal to the surface. 
 
In side the conductor 0D = , and D ρ∇⋅ = so 0ρ = . In electrostatics inside the conductor 
there is no excess charge. If a charge Q is imparted to the conductor, the charge will be 
distributed on the outer surface of the conductor with a certain surface charge density σ . 

1
conductor

2
insulator

E

 
Due to the boundary condition 2 1n nD D σ− = , but 1 20n nD D σ= → = . The normal component 
of the electric induction in the dielectric at the surface of the conductor is equal to the surface 
charge density. 
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1.2.1 Conductor in an External Electric Field 
 
When an uncharged conductor is introduced into an electric field, the charge carriers come 
into motion: the positive ones in the direction of E , the negative ones in the opposite 
direction. This process is called charging by induction and the excess charges are called 
induced charges. The charge carriers will be redistributed until the intensity of the electric 
field inside the conductor vanishes and the field lines outside the conductor are perpendicular 
to the surface. The induced charges distribute themselves over the outer surface of the 
conductor. 

conductor

 
The electrostatic shielding is based on this phenomenon. Any instrument can be protected 
from the action of external fields, if it is surrounded by a conducting shield. 
 

1.2.2 Capacitance 
 
Let’s consider an insulated conductor very far from the other conductors. A charge Q 
imparted to a conductor distributes itself over its outer surface so that the field intensity inside 
vanishes. If another charge Q of the same magnitude is imparted to the conductor this charge 
must distribute itself over the conductor in exactly the same way. 
Considering the superposition: if the charge is doubled, the field set up is also doubled and the 
potential of the conductor is also doubled.  
The zero potential is chosen in the infinity. The potential of an isolated conductor is 
proportional to the charge on it, and the proportionality factor is defined as the capacitance of 
the conductor. 

conductor

U

Q  

P

U E dr
∞

= ⋅∫  

Q CU=  
The definition of capacitance of an insulated conductor: 

QC
U

=  

[ ] 1 1 1CC farad F
V

= = =  

The submultiples are frequently used: 
31 10mF F−=  
61 10F Fμ −=  
91 10nF F−=  
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121 10pF F−=  
 
C depends on the shape of the conductor and depends on the medium in which it is immersed. 
 
Determine the capacitance of an isolated conductor sphere: 

conductor

U

Q

R

 

04Q Q RC RQU kk
R

πε= = = =  

The capacitance is proportional to the radius of the sphere. 
As the permittivity 0ε  is a very small number so the isolated conductors have a small 
capacitance. There are two ways to increase the capacitance. The first is to place a grounded 
conductor close to the charged conductor; the potential of the latter diminishes in absolute 
value. A capacitor consists of two isolated conductors carry equal and opposite charges. The 
conductors are called its plates. Depending on the shape, it should be parallel-plate -, 
cylindrical-, or spherical capacitors. 

1r

2r

E

1r 2r r  
The capacitance of a capacitor is defined as the positive charge over the potential difference 
between the plates: 

12

QC
U

+

= . 

The second way to increase the capacitance, to apply a dielectric instead of vacuum between 
the plates. As we know in the insulator: 

2 2
0

n n
r

D E σσ
ε ε

= → =  

where rε  is the relative permittivity of the filling dielectric. As 1rε >  the electric field, and 
the potential difference diminishes, so the capacitance increases. 
 

1.2.3 Capacitance of a parallel-plate capacitor 
 
Consider a parallel-plate capacitor, and suppose that d<<than the linear dimension of the 
plate: 
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σ+ σ−

A

d

0 rε ε

 

0 r

D E σσ
ε ε

= → =  

2 2

12
0 01 1 r r

U E dr dr dσ σ
ε ε ε ε

= ⋅ = =∫ ∫  

The integral is evaluated for a straight line. 

0
12

0

r

r

Q A AC dU d
σ ε εσ
ε ε

+

= = =  

 

1.2.4 Capacitors in Series and Parallel 
 

1. Series connection 

1U 2U

1C 2C

U

+Q +Q Q−Q−

 
If the capacitors are in series they always have the same charge. 

1
1

2
2

QC
U
QC

U

=

=
 1 2

1 2

Q QU U U
C C

= + = +  

The equivalent capacitance C of a series combination is defined as the capacitance of a single 
capacitor whose charge is Q and its potential drop is U 

1 2

Q Q Q QC
U C C C

= → = +  

1 2

1 1 1
C C C
= +  

 
2. Parallel Connection 
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1C

2C

U

1Q−1Q+

2Q−2Q+

 
If the capacitors are in parallel, the potential difference is the same for both capacitors and 
equal to the applied voltage. 

1 1

2 2

Q C U
Q C U

=
=

 1 2 1 2Q Q Q C U C U= + = +  

The equivalent capacitance C of the parallel combination is defined as a single capacitor 
whose charge is the total charge Q and its potential difference is U 

QC
U

= , so Q CU=  

( )1 2CU C C U= +  

1 2C C C= +  
 

1.2.5 Energy storage in electric field 
 
It is known that all charge configurations have a certain electric potential energy which is 
equal to the work that must be done to assemble the system. So a charged capacitor has stored 
also an electric potential energy which is equal to the work required to charge it. 
Consider now a capacitor and determine the work as it is charged. 

( )q t+

A

d

( )q t−

dq

( )U t

 
At a stage of a charging process denote the potential difference by U(t) and the charge by q(t). 
The elementary work required to transfer the next dq charge is: 

dW Udq=  
If the capacitance is C then: 

qU
C

=  

and the elementary work: 
qdW dq
C

=  

The total work needed to increase the charge from zero to a final value Q is: 
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2 21
2 2

QQ

o o

q q QW dW dq
C C C

⎡ ⎤
= = = =⎢ ⎥

⎣ ⎦
∫ ∫  

2
21 1

2 2 2
QW QU CU
C

= = =  

This is the work done to charge the capacitor. The potential energy of an uncharged capacitor 
is defined to be zero, then W is equal to the potential energy of the capacitor. 
It is reasonable to suppose that this energy is stored in the electrostatic field. Consider now a 
parallel-plate capacitor, if we neglect fringing, the electric field intensity is the same at all 
points between the plates. This is a homogeneous field. 

1 1 1 1
2 2 2 2

W QU AEd DEAd DEVσ= = = =  

Because: 

, UQ A E
d

σ= = and V Ad=  

The electric energy density is defined as: 
1
2

WW D E
V

= = ⋅  

[ ] 31E
JW

m
=  

Although we have derived this energy density only for a specific situation, it turns out to be 
valid in general. 
If an electric field E  exists at any point in space and the induction is D  then the energy 
stored in an elementary volume dV around the point in question is: 

1
2

dW D E dV= ⋅  

In a finite volume the total electric energy is: 
1
2V V

W WdV D E dV= = ⋅∫ ∫  

 


