

# UNIVERSITY of MISKOLC Faculty of Materials Science and Engineering



## Antal Kerpely Doctoral School of Materials Science & Technology

## X-ray diffraction methods

Dr. Valéria Mertinger

**COURSE DESCRIPTION** 

2016.

Author: Dr. Valéria Mertinger

### X-ray diffraction methods

#### Dr. Valéria Mertinger

#### Lecturer

Dr. Valéria Mertinger, professor, Institute of Physical Metallurgy, Metalforming and Nanotechnology.

room: B1 gr fl. 3 mail: <a href="mail@uni-miskolc.hu">femvali@uni-miskolc.hu</a>, tel: 1545, 302183699, http://www.matsci.uni-miskolc.hu/mertinger.htm

#### Recommendation

The lecture is proposed for all students of the Kerpely doctral school, especially in the field of metalforming, physical metallurgy, heat treatment and casting.

#### Language

Hungarian or English.

#### Scope

The objective of the course is to teach the parts and operation of an X-ray diffractometer, its main application methods.

#### Methodology

For larger student numbers, the course is held in contact lectures. The time of contact courses is based on agreements with the students. In case of 1-2 students, keywords are given of the corresponding block. Three blocks in total cover the whole course. Basic questions are also given for the blocks. 3 meetings are held during which answers for the basic questions, the students' questions and fundamentals are discussed.

#### **Topics**

#### 1.Topic

#### **Structure of an X-ray diffractometer**

The Bruker d8 diffractometer is inspected. A sketch is requested to make of its main parts.

Electron beam-matter reactions

X-ray beam-matter reactions

Diffraction, structure factor

#### **Basic questions:**

- 1. Expound the processes within an X-ray tube.
- 2. How are Fe  $K\alpha 1$ ,  $CoK\beta$  radiations produced?
- 3. Why must the X-ray tube be cooled?
- 4. What is the role and fundamental operation of the absorption filters?
- 5. What function type absorbs the different wavelength copper radiations?
- 6. What is the result of X-ray photons scattered with a path difference on atoms being in distance s?
- 7. What happens if the wavelength, or its integer multiple of an X-ray beam, diffracted on a plane series with plane distance d equals the multiplication of two

X-ray diffraction methods | 2016.

- times d and the sin of the angle between the primary beam and the diffracting plane?
- 8. What is the reciprocal lattice?
- 9. On what does the formation of the diffraction cone in the reciprocal lattice depend?
- 10. What superposition types are possible of of two diffracted photons with the same wvelength and different phases?
- 11. Do we get reflection (diffraction maximum) from the (110) plane series of austenitic steel in case of Co tube? And if Cr tube is applied?
- 12. What is the structure factor?
- 13. Do we get reflection (diffraction maximum) from the (111) plane series of steel in case of Co tube? And from the (220)? Why?

#### 2.Topic

Detecting the X-ray beam Properties of the interference function, diffractogramm Qualitative phase analysis quantitative phase analysis

#### Basic questions:

- 1. Does the detector moving on the goniometer circle measure all possible diffraction maximums?
- 2. Characterise one diffractogramm.
- 3. What data describe the diffraction profile obtained from the (200) plane series of steel?
- 4. What type of fixed tool is able to find all possible diffraction maxima?
- 5. Select a material of your choice, find all information about it in the PDF2 database.
- 6. Interference functions of steel (110) and (200) will probably differ. Why?
- 7. What problem arises during the ferrite content determination of cold rolled steel sheet?
- 8. What is the general problem during the absorption factor calculation?
- 9. You have to determine the retained austenite fraction in ball bearing steel. What do you measure? What can be identified using X-ray diffraction? eleemnts or phases? What kind?
- 10. Which factors must be dealt with during quantitative phase analysis?
- 11. Why can the absorption factor be neglected during retained austenite fraction determination in quenched steel?
- 12. Does the location of sampling have an effect during quantitative phase analysis in case of cast or cold rolled materials?
- 13. Which property of the reflection of a (hkl) plane series correspond to quantitative phase analysis?

#### 3.Topic

Residual stress measurement Texture measurement Profile analysis

#### Basic questions:

- 1. residual stress is to be measured in the valley of a gear wheel. Which property of the interference function is changed due to the resident stress?
- 2. What do you measure and how?
- 3. What special feature is required for texture (ODF) measurement compared to phase analysis?

- 4. How many reflections are measured during inverse pole figure measurement and which property is to be measured?
- 5. How can the dislocation density be determined in rolled sheet using X-ray diffraction?
- 6. residual stress is to be measured on the surface of ball bearing ring, how do you carry put the measurement?
- 7. How do you know, that compressive or tensile stress is measured?
- 8. What do we mean by texture and what is its consequence?
- 9. What is the most complete mode to describe texture?
- 10. which property of the interference function is changed by lattice defects?

#### References

- Aaron D.Krawitz:Introduction to Diffraction in materials Science and Engineering, John Wiley & Sons, 2001
- 2. H.Klug, L. Alexander: X ray diffraction procedures, Wiley & Sons , 1974
- 3. Dr Bárczy Pál, Dr Fuchs Erik, Metallográfia I. Tankönyvkiadó, 1981
- 4. + In case the student applies the method during his/her research, special literature is provided to the specified field.

#### Exam

Oral exam if basic questions are answered correctly.

#### Complex exam questions

- 1. The role of X-ray diffraction techniques in fine structure analysis. Benefits, disadvantages, limits.
- 2. The practical applications and limits of X-ray diffraction qualitative and quantitative analysis.
- 3. X-ray diffraction anisotropy examinations, information content and application areas of the different methods.
- 4. The role, importance and X-ray diffraction measurement method of residual stress.
- 5. Profile analysis and application fields in material science.