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Euler and music. A forgotten arithmetic
function by Euler

József Sándor26

Dedicated to the 100th Anniversary of the famous musician David Lerner
(1909-)

ABSTRACT. We study certain properties of an arithmetic function by Euler,

having application in the theory of music.

MAIN RESULTS

1. Since the time of Ancient Greece, mathematicians and
non-mathematicians have tried to find connections between mathematic and
music. Especially are well-known the findings of Pythagora and his followers
on the relations of natural numbers, the lengths of a vibrating string, and
the pitches produced by this string.

The Pythagoreans were interested also in the number mysticism and studied
these relations by experimenting with a monochored.

They discovered that a string whose lenght is subdivided in a ratio
represented by a fraction of two positive integers produces a note that is in
harmony with the note produced by the full string: if the ratio is 1:2 then
the result is an octave, with 2:3 one gets a perfect fifth, with 3:4 a perfect
fourth, etc.

Of particular importance was the discovery of the so-called Pythagorean
comma. In all pitch systems that are based on perfect octaves and perfect
fifths there is a discrepancy between the interval of seven octaves and the
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interval of twelve fifths, although both have to be considered as equal in
musical terms.

In musical practice the Pythagorean comma causes serious problems. So in
the past numerous approaches were developed to find tunings for
instruments that reduce these problems to a minimum. The tuning that

today is known best and used most often in European music is the equal
temperament or well temperament tuning. Tjis tuning become popular
during the baroque are and most notably by ”The well-tmperated Clavier”,
Bach‘s grand collection of preludes and fugues that impressively
demonstrated the possibility of letting all keys sound equally well. Of course
one could say also equally bad, since in the equal temperament none of the
intervals but the octaves are perfect any more, i.e. the ratio mentoned above
are no longer valid.

In the equal temperament every octave is subdivided into twelve half-steps
allof which have the same frequency ratio of 21/12, where in the terminology
above the 2 is to be reads as 2:1, i.e., the frequency ratio of an octave. All
frequencies of the pitches of the equal tempered twelve-tone scale can be
expressed by the geometric sequence

fi = f0 · 2i/12,

where f0 is a fixed frequency, e.g., the standard pitch a′ (440Hz) and i is the
half-step distance of the target note from the note with the frequency f0.
Then, fi is the frwquency of the target note.

In odern times, Leonard Euler (1707-1783) was one of the first who tried to
use mathematical methods in order to deal with the consonance/dissonance
problem. In his work, too, ratios of natural numbers, reflecting frequency
ratio of intervals, play an important role. In his paper ”Tentamen novae
theoriae musicae” (see [1]) of 1739, Euler defines the following arithmetic
function (”Gradus-suavitalis function”). Let n be a positive integer and
suppose its prime factorization is

n = pa1
1 pa2

2 ...par
r (pi distinct primes, ai ≥ 1)

Put

E (n) = 1 +
r∑

k=1

ak (pk − 1) (1)

Let
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E (1) = 1, by definitin

In what follows, we will study this forgotten arithmetical function by Euler,
but first note that for musical application Euler defined the function E also
for the reduced fraction x

y by

E

(
x

y

)
= E (x · y)

Inserting fractions that represent ratios of musical intervals into his formula,
we obtain the following values:

octave : E
(

1
2

)
= 2

fifth : E
(

2
3

)
= 4

fourth :
(

3
4

)
= 5

major third : E
(

4
5

)
= 7

minor third : E
(

5
6

)
= 8

major second : E
(

9
10

)
= 10

minor second : E
(

15
16

)
= 11

tritone : E
(

32
45

)
= 14

According to Euler, these numbers are a measure for the pleasentness of an
interval; the smaler the value the more pleasing the interval. Indeed, this is
more or less in a accordance with our European listening habit, with one
exception: the perfect fourth is heard as a dissonance in some contrapuntal
and functional harmonic contexts (see [3]).

Remark. Euler used the notation Γ (n) for his function, in place of E (n).
We have adopted this notation, as there is another important function
introduced also by Euler in mathematics, the famous ”Gamma function.”

2. In what follows we will study the arithmetical function E (n) of positive
integers, defined by relation (1).

If the canonical factorization of n is n = pa1
1 ...par

r , then there are some
well-known arithmetical functions, which are connected to the function
E (n) .

Let p (n) , P (n) denote respectivelly the least and the greates prime factors
of n.

Let ω (n) , Ω(n) denote the number of distinct, respectivelly total number, of
prime factors of n. Then clearly, ω (n) = r, Ω(n) = a1 + ... + ar.

The following arithmetical function B (n) has been intensively studied, too
(see e.g. [4], [2]):
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B (n) =
r∑

k=1

akpk

Proposition 1. One has for n > 1

E (n) = 1 + B (n) − Ω(n) (2)

E (n) ≥ 1 + Ω (n) (3)

Proof. Relation (2) is a consequence of (1) and the above introduced
arithmetic functions. As

B (n) ≥
r∑

k=1

ak · 2 = 2Ω (n) ,

inequality (3) follows by (2).
Proposition 2. For n ≥ 2 one has the double inequality

1 + Ω (n) (p (n) − 1) ≤ E (n) ≤ 1 + Ω (n) (P (n) − 1) (4)

Proof. Remark that

B (n) ≤ max {p1, ..., pr}
r∑

k=1

ak = P (n)Ω (n) ,

and similarly

B (n) ≥ min {p1, ..., pr}
r∑

k=1

ak = P (n)Ω (n)

From identity (2) we can deduce the double inequality (4).
Remark. (4) may be written also as

p (n) ≤ 1 +
E (n) − 1

Ω (n)
≤ P (n) (5)

Remarking that E (p) = 1 + (p − 1) = p for each prime p, one could ask for
the fixed points of the function E.
Proposition 3. The fix points of the function E are only the prime
numbers. In other words, one has

E (n) = n if n = prime
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Proof. We need the following two lemmas.
Lemma 1. pa ≥ pa for all p ≥ 2, a ≥ 1; with equality only for p = 2, a = 1.
Proof. The inequality pa−1 ≥ a is true, as pa−1 ≥ 2a−1 ≥ a, which follows at
once by mathematical induction.
Lemma 2. Let xi > 1

(
i = 1, r

)
. Then one has

r + x1x2...xr ≥ 1 + x1 + ... + xr (6)

with equality only for r = 1.
Proof. For r = 1 there is equality; while for r = 2 the inequalityis strict, as
2 + x1x2 > 1 + x1 + x2 by (x1 − 1) (x2 − 1) > 0, valid as x1 − 1 > 0,
x2 − 1 > 0.
Assume now that (6) is true for r ≥ 2 fixed, with a strict inequality. Then
for xr+1 > 1 one has

r + 1 + x1x2...xrxr+1 > r + 1 + xr+1 (1 − r + x1 + ... + xr) =

= r − rxr+1 + (1 + xr+1 + x1 + ... + xr) + (xr+1 − 1) (x1 + ... + xr) >

> 1 + x1 + ... + xr + xr+1

as

r − rxr+1 + (xr+1 − 1) (x1 + ... + xr) = (xr+1 − 1) (x1 + ... + xr − r) > 0

as x1 + ... + xr > r and xr+1 > 1. By induction, we get that (6) is true for all
r.
Proof of Proposition 3. One has

E (n) = 1+a1 (p1 − 1)+...+ar (pr − 1) ≤ a1p1+...+arpr−r+1 ≤ pa1
1 ...par

r = n,

with equality only for r = 1, a1 = 1, i.e. when n is a prime. We have used
Lemma 1 and Lemma 2.
Proposition 4. One has for n ≥ 2,

E (n!) ≤ 1 + nπ (n) , (7)

where π (n) denotes the number of all primes ≤ n.
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Proof. Let n! =
∏
p|n!

pap be the prime factorization of n!.

By Legendre‘s theorem one has

ap =

∞∑

j=1

[
n

pj

]
≤

∞∑

j=1

n

pj
=

n

p

(
1 +

1

p
+

1

p2
+ ...

)
=

n

p
· 1

1 − 1
p

=
n

p − 1

Thus

E (n!) = 1 +
∑

ap (p − 1)

where in the sum we have ω (n!) terms. Remark that ω (n!) = π (n) , as in
n! = 1 · 2 · ... · n the number of distinct prime divisors is exactly the number
of primes ≤ n. As ap ≤ n

p−1 , relation (7) follows.
Finally, we will obtain the overage order of the function E (n) :
Proposition 5. One has

∑

n≤x

E (n) =
π2

12
· x2

log x
+ O

(
x2

log2 x

)
(8)

Proof. By the famous result of Hardy and Ramanujan (see e.g. [1]) one has

∑

n≤x

Ω(n) = x log lg x + K · x + O

(
x

log x

)
(9)

where K is a constant.
On the other hand, by a result of Alladi and Erdős (see [2], [4]) one has

∑

n≤x

B (n) =
π2

12
· x2

lg x
+ O

(
x2

log2 x

)
(10)

Now, by Proposition 1, relation (2) the expression (8) follows by remarking
that

x lg lg x + K · x = O

(
x2

log2 x

)

and

O

(
x

lg x

)
= O

(
x2

log2 x

)
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