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ABSTRACT 

For very hot fluids (in stars, in heavy nuclei, analysing fusion experiments) it is 
reasonable to apply the relativistic treatment and the strong discontinuities evolved 
in the medium have a great importance. Shocks of a magnetized relativistic plasma 
are examined supposing that the radiation term dominates the expressions of 
pressure and internal energy. From dynamical equations of the plasma we derive 
the jump conditions and introduce continuous scalars. In consequence of the simple 
state equation the key of the problem is to solve an irrational algebraic equation for 
the index of fluid. The shock amplitudes of density, pressure, magnetic induction 
and flow velocity will be determined. We produce the graphs showing the pressure 
and induction plotted against the shock speed for transversal and oblique external 
magnetic fields on various hydrodynamic and magnetic pressure numbers by 
numerical calculations. Similarly, we plot the transversal flow velocity arising 
behind the shock in an oblique magnetic field. 

INTRODUCTION 

In an earlier paper [1] Majorana and Anile studied magnetoacoustic shocks in a 
Synge gas. The relatively complicated caloric equation of state makes difficult the 
numerical evaluation. Conversely, in certain astrophysical models (e.g.: analysing 
supernova explosion) the medium can be considered as a radiation dominated 
plasma, and — thanks to the simple state equation — the volume of calculations 
decreases. 

Our treatment stays within the framework of special relativity using Minkowski 
coordinates (x4 = ict) and summation convention of repeated indices will be 
accepted. The thermodynamical quantities refer to the proper frame of medium. Let 
ρ , p, e, v, respectively, the density, pressure, specific energy and flow velocity of 
the plasma. The world velocity is 

λ = γv/c   ,   λ4 = iγ 

with γ = (1-v·v/c2)-1/2 ; it seems that 

λr λr = -1 . 
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The electric intensity and magnetic induction will be denoted with E and B. For the 
magnetic four-vector we have 
 

b = γ(B + E ×  v/c),  b4 =iγv·B/c ; λrbr = 0 . 
 

The plasma is regarded as a perfect fluid with an infinite electric conductivity, i.e. 
E = v ×  B , so 
 

B = γ(b + ib4v/c) 
and 

B2 = γ2b2 + 2
4b      (1) 

 
where  b2 = brbr . 
 
Let Φ (xr) be a time-like regular hypersurface along which finite discontinuities in 
the quantities are permitted, and nr be the unite normal four-vector to Φ. Then one 
may write [2] 
 

n = ГN , n4 = iГV/c ; Г = (1-V2/c2)-1/2 , 
 

where V is the shock speed and N represents the unite normal three-vector to the 
wave front printing to the region at rest (0) into which the shock enters from the 
perturbed region (1). 
 
II. MAIN EQUATIONS 
 
The main system of our problem contains the equation of continuity, the Maxwell 
equation of a perfect plasma, the equation of motion and the state equation. It is 
assumed that the particle number is conserved, so we have 
 

( ) / 0 ,i ixλρ∂ ∂ =      (2) 
on the other hand the Maxwell equation has the form 
 

( ) 0.i k k i kb b xλ λ∂ − ∂ =     (3) 
 

The energy-moentum tensor can be written   [3] 
 

( ) ( )2 2 2 / 2ik i k ik i kT f c b p b b bρ μ λ λ μ δ μ= + + + −    (4) 
 

with 
( ) 2f e p cρ= +  

 
(f is named index of fluid) for which it holds that 

 



/ 0.ik kT x∂ ∂ =       (5) 
 

The state equation of a medium dominated by radiation is [4] 
 

2 3 ,e c pρ= +  
 

so the index assumes the form 
 

21 4f p cρ= + .     (6) 
 

It is easy to see that such a plasma satisfies the Weil conditions, consequently a 
shock travelling in it is a compressive wave. 
 
III. JUMP CONDITIONS. CONTINUOUS SCALARS 
 
(2), (3) and (5) are conservation laws, hence we may write 
 

[ ] 0k knρλ = , [ ] 0i k k i kb b nλ λ− = , 

( ) ( )2 2 2 2 0i k ik i k kf c b p b b b nρ μ λ λ μ δ μ⎡ ⎤+ + + − =⎣ ⎦  
 
where [ ]ψ denotes the jump of a quantity ψ  across Φ : 
 

[ ] 1 0ψ ψ ψ= −  
 

and μ  is the vacuum permeability. 
 
Let us introduce the abbreviations r rλ λ θ= , k kb n β= . The quantities 
 

J ρθ= , 
i i iV βλ θβ= − ,                                                   (7) 

( ) ( )2 2 2 / 2i i i iW f c b p b n bρ μ θλ μ β μ= + + + −                       (8) 
 
are continuous along the shock front. From (7) and (8) one gets the following 
scalars: 
 

2 2 2
i iH VV bθ β= = − , 

2/i iN VW Jc f β= − = , 
2 2 2

i iF W n H c f p bμ ρθ μ= − = + + , 
2 4 2 2 2 2 2 4 2( ) / ( 1) 2 2i iM F WW c J f fb c pH c Jθ μ ρ μ= − = + + − . 

 
The calculations will be carried out in the proper frame before the shock. By 
V c u=   we have 



 
 

 
Fig.1 

 The shock front and the external magnetic field 
 
 

λ0 = 0, 40λ = i, 0 Гuθ = , 
0 0 cosNb B ϕ= , 0 0 sinTb B ϕ= , 40 0b = , 0 0 cosГBβ ϕ= , 

and 
0 1 4f s= +  

 
where 

2
0 0s p cρ=  
 

is the hydrodynamic pressure number, T denotes the unite tangential three-vector, 
moreover 
 

1 1Nλ γ ξ= , 1 1Tλ γ η= , 41λ = iγ ; 
1 /Nv cξ = , 1 /Tv cη = . 

 
IV. THE QUANTITIES BEHIND THE SHOCK 
 
From the continuity of scalars J, N it is easy to get the density ratio and 1β : 
 

1 0 1r Гuρ ρ θ= = − ,   ( )1 1Г uθ γ ξ= − ,   (9) 
( )1 0 1 0 cosf f ГBβ ϕ= ,    (10) 

 
and the relation [ ]H =0 gives 
 

( ) ( )2 2 2 2 2 2 2 2 2
1 0 0 1 cos cosb B r u f f uϕ ϕ⎡ ⎤= + −⎣ ⎦ ,   (11) 

 



where we have used (9) and (10). 
 
Now we consider that F has no jump. Inscribing (9) and (11) one finds 
 

( ) ( ) ( ) ( )2 2 2 2 2 2 2 2 2
0 1 1 12 cos cos 1 4 1r u f f u r f u f u rχ ϕ ϕ⎡ ⎤+ − + − + − =⎣ ⎦

( )2 2
0 1 2u f u s χ= − + + ,    (12) 

 
where 
 

2 2
0 0B cχ μ ρ=  

 
is the magnetic pressure number. 
 
From the condition [ ] 0M =  we obtain 
 

( ) ( ) ( )2 2 2 2 2 2 2 2 2
1 1 0 11 1 2 cos cosu u r f f r u f f uχ ϕ ϕ⎡ ⎤ ⎡ ⎤− + + + − −⎣ ⎦ ⎣ ⎦  

( )( )( ) ( )2 2 2 2 2
1 0 02 1 cos 1 2r f u u f u fχ ϕ χ− − − = − + −  

( )2 2 22 coss u uχ ϕ− − .    (13) 
 

Let us multiply (12) by 1f , (13) by r and subtract the arising expressions from one 
another: we get a quadratic equation for density ratio: 
 

0R r f= , ( )1 22 2R C C kD D⎡ ⎤= − ± −⎢ ⎥⎣ ⎦
 

 
with 

( ) ( ) ( ) ( )22 2 2 2
1 13 4 1 4 1 2 1 3 cosC f f s u u sχ ϕ−⎡ ⎤= + − + − − + +⎣ ⎦ , 

( )( ) ( )22 2 2 2 2
1 12 1 cos 3 1 4 cosD f f u s uχ ϕ ϕ− −⎡ ⎤= + − + +⎣ ⎦ , 

( ) ( )2 22 1 3 1k s u s uχ ⎡ ⎤= + + + −⎣ ⎦ .    (14) 
 
Putting (14) into (12) we have an irrational algebraic equation for the index of fluid 
behind the shock which contains the parameters , ,u sϕ  and χ : 

( ) ( ) ( )23 2 2 2 2 2 2 2
1 1 12 1 cos 1 4 cosR u f s u R f fχ ϕ ϕ− −⎡ ⎤− + + + − −⎣ ⎦  

( )2 24 4 1 0kR u u− + − = .    (15) 
 
With knowledge of 1f  (14) gives r, while the pressure ratio 1 0q p p=  can be read 
off from (6): 
 



( )1 1 4q f r s= − . 
 
Now we are going to compute the jump of flow velocity. Owing to continuity of TV  
 

( )1 0 0 1 1sin cosTb B r f f uϕ γ η ϕ= −⎡ ⎤⎣ ⎦ ,    (16) 
 
and from the condition [ ] 0TW =  one gets 
 

( )( )2 2 2
1 1 0 1 1 1 0 sin cosTrf b b Гu r b B Гχ γ η β μ ϕ ϕ+ + = .   (17) 

 
Substituting (16) into (17) and making use of (10), (11) one finds 
 

( ){ } 1
1 2 2

1 12 1 cosg uf R uγ η χ ϕ
−

− −⎡ ⎤= = + −⎣ ⎦ ( )1 1 4 sin 2s R ϕ− +⎡ ⎤⎣ ⎦ .  (18) 

 
Let us employ the identity ( )2 2 2

1 1 1γ ξ η− − =  and the relation  
 

( )1 u u rγ ξ− =  
 

got from (9). Taking account of (18) we obtain the expression of Lorentz factor 
behind the shock: 
 

( ) ( )( ) ( )
1 222 2 2 2 2 2

1 1 1 1u r u u r g u r uγ ⎧ ⎫⎡ ⎤= + − + + − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
.  (19) 

 
Now then the jump of normal flow velocity is 
 

( )11 1u rξ γ= − , 
 

moreover η  is given by (18), (19). 
 
It still remains to be done the expression of induction ratio 1 0h B B= . From the 
condition [ ]4 0V = , with an eye to (10), we have  
 

( )( )41 0 1 0 1i 1 cosb B r u f fγ ϕ= − ,    (20) 
 
while (1) leads to the expression 
 

( ) ( )2 22 2
1 1 0 41 0h b B b Bγ= + . 

 
After substituting (11) and (20) we find 
 



( ) ( ){ }1 22 2 2 2 2
1 1 11 cos 2 1 4 1 cosh r u s f uγ ϕ γ ϕ− −= − + + −⎡ ⎤⎣ ⎦ . 

 
Lichnerowicz has shown [3] that in a compressive shock [ ]f , [ ]ρ  and [ ]p  are 
positive quantities, so 

 
1f >1 4s+ , R > 11 f .     (21) 

 
V. NUMERICAL EVALUATION 
 
The equation (15) has been solved for the values 2π  and 4π  of ϕ  by numerical 
computations. For the parameter pair ( ),s χ  the values (0.1, 0.1), (0.1, 0.2) and 
(0.5, 0.1) have been taken. 
 

 
Fig.2 

Pressure and induction ratio as functions of shock speed in a trans- 
versal and oblique magnetic field for various parameter pairs ( ),s χ  

 
 



From the solutions we have chosen the pairs ( ),f R  satisfying the criteria (21). With 
knowledge of these it is easy to compute the values of q, b and η  (if the external 
magnetic field is longitudinal or transversal, η  vanishes). These quantities have 
been plotted against the shock speed. 
 

 
Fig.3 

 Transversal flow velocity behind the shock as function  
of shock speed in an oblique magnetic field ( )4ϕ π=  for various  

parameter pairs ( ),s χ  
 
In the case of a Synge gas these functions have two branches if the magnetic field is 
oblique [4]. In our case the lower branch does not exist: for 2h  one obtain negative 
values. 
 
Intensifying the external magnetic field displaces the minimal shock velocity 
required to form a shock in the direction of light speed in vacuum. The transversal 
flow velocity is not a monotonic function of u, and it vanishes if V approaches c. 
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