
INDICATIONS OF POSSIBLE CHAOS IN ARRAYS OF 

SINGLE-DOMAIN NANOMAGNETS 

Endre Kovács 1, Michael Forrester 2,3, Feodor Kusmartsev2  
1 Miskolci Egyetem, Fizikai Tanszék, 3515 Miskolc-Egyetemváros 

2 Department of Physics, Loughborough University, LE11 3TU, United Kingdom 
3 Department of Chemical Engineering, Loughborough University, LE11 3TU, UK 

ABSTRACT 

We study the dynamical behaviour of a system that consists of one or two elongated 

nanomagnets. The magnets are coupled antiferromagnetically and subjected to 

periodically changing external magnetic field. The numerical simulation of the 

system reveals the possibility of chaotic behaviour. 

THE STUDIED SYSTEM 

It is well known that in continuous dynamical systems whose phase space has two 

dimensions, chaotic behaviour can not arise (Poincaré–Bendixson theorem). 

However, if there is a periodic driving force, we must add one to the number of 

dimensions and thus, in case of nonlinearity, chaotic motion becomes possible. 

In the last few years, significant attention has been concentrated on understanding the 

physical properties of magnetic nanosized particles [1, 2]. Both theoretical [3] and 

experimental [4, 5] studies indicate that the internal magnetic structure of sufficiently 

small particles can be regarded as a ferromagnetic monodomain. Therefore we 

identify each particle with one magnetic moment im , where i= 1,…,N, and N is the 

total  number of particles (N=1-3 in this work). We use the following Hamiltonian: 
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where J is the usual exchange-energy term, whilst a=10 and b=100 are the anisotropy 

coefficients originating from shape-anisotropy. As a and b are positive, there is an 

effective easy x-axis and hard z-axis anisotropy at the same time. H is the applied 

external magnetic field, which is homogeneous and has only an x-component in this 

paper. When the nanomagnets are in close proximity the exchange coupling 

dominates the form of the coupling, coming from the Ruderman-Kittel-Kasuya-

Yosida (RKKY) interaction, which can be ferromagnetic (J>0) or antiferromagnetic 

(J<0). We note that there is no explicit dipole-dipole coupling in this Hamiltonian. 

One can consider it included into the exchange-coupling term which therefore can be 

regarded as an effective coupling. 

In order to derive the equations of motion we use the well-known Landau-Lifshitz-

Gilbert equations [6], in which the first term on the right hand side causes only 

precession around the energetically favoured axis while the second term is the 

dissipation:  
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where γ and g are constants with values γ=1 in this work. The effective field acting 

on the i-th particle is 
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To investigate the hysteresis and the magnetization reversal we apply a periodic 

magnetic field: 

x y zH ( )  H sin(2 f · ) ,  H ( )  0 ,  H ( )  0t t t t    

where t j h  , j is the loop index, h=0.001 is the timestep. 

For the numerical solution of the dynamical differential equation-system the Runge-

Kutta method has been used with adaptive step-size control, written in programming 

language C. This means that inside one visible numerical timestep h there are actually 

an indefinite number of tiny time-steps. In the code the variables are the usual angles 

of the spherical polar coordinate system, i.e. φ and θ are the angles between the 

moment and the x and z axes respectively. 

To characterize different behaviours, we will examine a specific stroboscopic map. It 

means we draw the  x y,M M point-pairs periodically with two point-pairs in every 

2 /T f time-interval, i.e. one in every half-period of the external driving field. 

We use the following indicator, the so called Lyapunov exponent to indicate chaotic 

behaviour: At a given time (let us say t=0), we change φ and θ with a small random 

number of similar magnitude and denote it by   and  , than calculate the logarithm 

of the deviation of the modified   from the original value of θ divided by the initial 

deviation: 
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Then the first few values (i.e. at the first few numerical timesteps) of 

this function d(t) are examined. Now the Lyapunov exponent is found by =d( ) / tt . 

THE RESULTS OF THE SIMULATIONS FOR ONE OR TWO PARTICLES 

We start from the point where we stopped in our previous publications: we chose the 

parameters f and g in the range we had already investigated [7, 8, 9].  For low 

frequency (f=0.01) and relatively strong damping (g=0.1) the hysteresis loop of the 

particle is simple and looks like a square. This simple hysteresis loop can be seen in 

Fig. 1. During the very short period of the magnetization-reversals the moment may 

move into different directions, but this does not affect the shape of the square 

hysteresis loop. Trajectories with different initial conditions sooner or later converge 

to each other. Thus the average Lyapunov exponent is not positive. After some 

temporary, transient oscillations due to different initial conditions, the motion can be 

considered periodic and the stroboscopic map contains two points. 



 

 
 

FIG.1. Square hysteresis loop. In the horizontal axis, H is the magnitude of the 

external field. In the vertical axis X
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  is the x component of the total 

magnetization of the system, normalized by one. The data for decreasing field are 

denoted by blue line while for increasing field we use green line. 

 

If the system reaches the saturation magnetisation, then the differences between 

different trajectories are annihilated. In order to make possible the chaotic behaviour 

we have to prevent this. Following the methodology employed for isolating hysteresis 

pathways to find the nanomechanical behaviour of nanomagnets in fluid suspensions 

[10], we can do it by using 

a) higher frequency  

b) weaker damping. 

c) smaller H amplitude (or additional static fields) 

d) strong antiferromagnetic coupling between the particles 

 

 
FIG.2. Stroboscopic map for one particle. 

 



First we try a) and b) simultaneously. Higher frequency and weaker damping 

generally cause more irregular oscillations. The system has no time to reach the 

saturation and therefore the initial differences can persist between the trajectories. 

The stroboscopic map indicates that the motion is not periodic, see Fig. 2. However, 

identifying a positive Lyapunov exponent, which is a signature of an unstable orbit 

belonging to a chaotic region, has not occurred for the limits investigated. 

 

 
FIG.3. The red and green line are 2 trajectories initially close to each other. The 

blue line indicates the external field. 

 

Applying the principles (a) to (d) of the main text leads to further system instability 

and a move towards a chaotic regime. The next step is to decrease H as well. At 

H=60 the field is still strong enough to force the moments to change their position 

between the potential wells. The initially close trajectories can move very far from 

each other, see Fig. 3. However, the d(t) function is increasing only very slowly (see 

Fig. 4.), thus we can say that the behaviour is only very weakly chaotic. 

 

 
FIG.4. The d(t) function to get the Lyapunov exponent 0.015   

 



If we set N=2 and J=-20, the behaviour becomes even more irregular. The d(t) 

function is increasing more rapidly (Fig. 5.) and the hysteresis loops are completely 

distorted and random-like (Fig. 6.).   

 

 
FIG.5. The d(t) function for antiferromagnetic coupling, 0.027   

 

 
FIG.6. Hysteresis “loops” for two antiferromagnetic coupled nanomagnets. 

 

SUMMARY 

 

We have investigated the complex dynamical behaviour of magnetic element systems 

by solving the Landau-Lifshitz-Gilbert equations numerically. Even for one or two 

magnetic elements there is an apparently non-trivial behaviour. Future work will 

demonstrate larger magnetic systems too. We have previously shown that even for 

two magnetic elements the system can synchronise, leading to interesting 



connotations for magnetic enhancement effects [8], magnetic memory devices [11] 

and cellular automata [12]. The chaotic regimes of nanomagnetic systems are of high 

interest too in order to define the operational limits of devices. The damping on the 

system is fundamental to the physically interesting limits of the system, but there is 

also a high dependence upon other parameters like shape anisotropy, the field 

amplitude and frequency. We find that in these magnetic systems switching occurs in 

accordance with the directions of the macrospins and that the attractor is always part 

of a limit cycle. By inhibiting the system to operate in the regime prior to reaching 

the saturation fields we force it to search for additional metastable states and coerce it 

closer to chaos. Many unusual hysteresis pathways can result as a consequence of this 

strategy, even when the damping is relatively high, as in magnetic memory elements. 

Thus, it is important to know the attractors of the system in order to maximise 

magnetic switching efficiency between different states. The insights gleamed from 

identifying the chaotic motion in this ongoing work may lead to the development of 

ultrafast nanomagnets and allow us to optimise the structure for spintronics in both 

terms of size/ geometry, as well as material choice.  
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