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ABSTRACT 

Using model transformations is a relatively young research field. Since a graph can 
be used very well to describe the structure of a model, model transformation is often 
applied by graph transformation. Graph transformation is an NP-complete problem, 
thus the size of the pattern to search for can heavily affect the transformation time. 
Nowadays, when we tend to use highly complex and large models, thus computing 
the results can be very slow. When applying graph transformations in a usual personal 
computer or a notebook, it is an important challenge to reduce the time and memory 
of the computation, thus, a new way of calculation is required. In this paper, we 
present a new approach for graph transformations that can use the computing power 
of GPUs efficiently. We illustrate the mechanism of the new approach by a simple 
model transformation case study. We provide solutions to the case study by both a 
classical, CPU-based graph transformation and our new approach. The two solutions 
are compared and conclusions are drawn.  

INTRODUCTION 

Recently model driven engineering became a popular software development 
methodology in the software industry to develop complex systems. To reduce the cost 
of a development and increase the complexity of the system is one of the most 
important goals of each software development project. MDE refers to the systematic 
use of models as primary engineering artifacts throughout the engineering lifecycle. 
Model transformation is used to ensure consistency between the models and to 
process models. Model transformation is described in many articles and studies, for 
example in [1]. Model transformation is a basic concept in model-driven engineering 
and it works mainly on domain models. 
Model transformations can be considered as programs which use models as input and 
as output. For writing a model transformation program, any general purpose program 
language can be used like C++ or Java, but specialized model transformation 
languages are also available. In most of the cases, models can be represented as 
graphs and in this case we can use graph transformations to modify or process the 
models. Graph transformation is based on graph rewriting, which means applying 
graph rewriting rules. A rewriting rule consists usually a left-hand side, i.e. a pattern 
to find, and a right-hand size, which is the replacement of the pattern found. In 
general, graph transformation is an NP hard problem, because the algorithm has to 
iterate through each element of the graph several times to find the pattern. 
In case of real-life models, we have a large amount of model elements, which results 
in slow model transformations. Since we cannot reduce the complexity of graph 
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transformations in general, applying the transformation in parallel is a promising way 
to reduce the time needed by the calculation. For parallel calculation the graphics 
processing unit (GPU) can be used along with the CPU. GPU-accelerated computing 
is the use of a GPU together with a CPU to accelerate the transformation. Comparing 
the CPU and the GPU, the first one consists of a few cores optimized for sequential 
serial processing, while a GPU has a massively parallel architecture consisting of 
thousands of smaller, more efficient cores designed for handling multiple tasks 
simultaneously. 
In this paper, we describe a model transformation case study and its solution with two 
different kind of implementations. As first, we solve the task by using usual graph 
transformation techniques running on the CPU, after that we provide a solution based 
on GPGPU programming.  

RELATED WORK 

There are several papers and studies which collect and classify the model 
transformation tools. In [2] there are several tools described for example Edapt, 
GrGen.Net, Groove, Henshin, MOLA and Viatra2. [3] is another study elaborating 
the features of several tools. In case of simpler models, there is no real need for 
parallel calculation in general. However, in case of bigger inputs, or more complex 
patterns, the calculation can slow down to an unacceptable level and thus new 
methods are needed. One way of accelerating the transformations is to use the 
remarkable computing power of modern GPUs. Many of the existing tools use graph 
transformation as a model transformation but none of them can use the computing 
power of a GPU or APU. Although parallel calculation becomes more popular and 
more frequently used recently, existing graph transformation approaches do not really 
follow this trend.  
However, if we widen our focus to graph algorithms in general, we can find GPU-
based solutions. The paper [4] presents an optimized CPU-GPU implementation for 
finding Euler circuit on a randomly generated Eulerian graph. The graph consist 4096 
vertices and 1.7 million edges and their algorithm can find the Euler circuits about 1 
seconds. The GPU-based implementation is 50 times faster than the best sequential 
CPU implementation. 

GPGPU PROGRAMMING AND OPENCL LANGUAGE IN NUTSHELL 

Using the CPU for general calculations is the general practice as much as using the 
Graphic Processing Unit for computer graphic computations. The idea of using GPU 
in general, computing intensive algorithms became natural a few years ago. The most 
frequently used stream in case of GPUs is a 2D grid and for example, graph can be 
mapped into 2D grid and processed effectively. Nowadays plenty of research group 
works with GPGPU programming. 
The OpenCL framework [5] is the most popular open general-purpose GPU 
computing language. OpenCL provides only a general interface and each hardware-
vendor has to have its own implementation. The main advantage of using OpenCL is 
that it can be executed across heterogeneous platforms (CPU, GPU, DSP, FPGA). 
The base API is written in C language. 



GRAPH TRANSFORMATION WITH GPGPU 

Description of the case study 

In our case, the input model is a unidirectional translation graph which is created from 
a freely available Wiktionary dictionary [6]. Wiktionary is a multilingual dictionary 
containing words of several languages. More precisely, there are words and 
expressions in the dictionary as well. For the sake of simplicity, we will refer them 
as words from now on. In our case, the input data consists of word pairs, which are 
translations of each other e.g. “HU Alma” – “EN Apple”. The input dictionary 
contains 514 047 pairs of words. From this input, we build a graph. Each vertex in 
the graph is a word and the edges mean their translations. Words can occur several 
times in the input file as a word can have multiple translations. It is also possible to 
have pairs containing different words from the same language (i.e. synonyms). 
During processing, there is no filtering used for the input pairs, each element of the 
input dictionary are processed. 
In our case, the task is to find paths between vertices. There are some existing 
algorithms for finding even cycles. For example, in the [7], an efficient algorithm is 
described to find even cycles in undirected graph. In this paper we fixed the length 
of the paths to five, but later we tested our solutions with several other fixed lengths 
as well. Searching of the patterns must be made exhaustively. One path between two 
vertices means that they are probably synonyms to each other. In case of two disjoint 
paths, the two words are more probably synonyms. Therefore, we focus on finding 
circles of the given length. 

Implementation of the graph transformation algorithm into CPU calculation 

We used Microsoft Visual Studio 2013, C++ language with STL library and its MS 
Windows STL extension on an Intel Core i3 CPU. From the performance point of 
view, choosing an appropriate data structure is one of the most important task. The 
algorithm has three main phases: (i) reading the input data from the input file and 
create the model graph, (ii) finding the circles and (iii) processing the result and 
printing the output. 
It is much easier and faster to work with integer numbers than with strings, therefore 
each word is mapped to an integer number at the beginning of the algorithm. We 
convert these integer codes back to words at the end of the algorithm. 
The model graph is represented as a hash map, where we store the ID of the vertex 
and the list of their neighbors. The advantage of using a hash map is that finding an 
element based on its ID requires O(1) time. Although we use a little bit more memory 
this way, the time is more critical in this scenario. 
There are several ways to find circles in a graph. Using a recursive solution is 
probably not the best solution here because stack overflow can occur easily if the 
length of the circles are large. Thus, we iterate through all the vertices and start four 
embedded loops from them as it can be seen below. To store the results, we use a 
hash table. Before adding a new circle to the table, we check whether it is already 
contained in the hash table or not and thus circle duplication can be avoided. 
 



The pseudo code of finding five length circles in the graph is the following: 
 
for (vertex in all vertices) 
   for (n1 in neighbours of vertex) 
     for (n2 in neighbours of n1) 
       for (n3 in neighbours of n2) 
         for (n4 in neighbours of n3) 
          for (n5 in neighbours of n4) 
           if n5 == vertex then 
             order (n1, n2, n3, n4, n5) in VerRes array 
             if VerRes not is stored 
               add Vertices to the results 
 
At the end of the algorithm, we obtain the list of fixed length circles, namely the 
results. The algorithm convert the data back from numbers into the original words 
and prints the result into the output file. 

Implementation of the graph transformation algorithm into CPU-GPU calculation 

In the GPU-based approach, an NVIDIA 710M video graphic card was used. To build 
the working environment the OpenCL header definition must be downloaded from 
the Khronos web site and its NVIDIA implementation from the NVIDIA's website. 
The libraries can be found in the CUDA development environment. Since NVIDIA 
supports OpenCL 1.1 version only, we were restricted to use this version. 
The implementation of the GPU version is similar to the CPU version in some steps 
but there are several differences at the same time. In this case, there are three main 
phases: (i) reading the input graph as it is done in the implementation for CPU, (ii) 
creating and running the OpenCL kernel several times and (iii) processing the result 
and print it into an output file. 
At the beginning of the algorithm, we convert the graph into a special array format 
which can be passed to the GPU. The best input of the GPU is a one dimensional 
array, or a set of such arrays. To achieve the format, the graph is converted as 
illustrated in Figure 1. 
 

 
Figure 1. 

New data structure which can be passed to the GPU card 



The original, two dimensional structure of the graph is mapped into two one 
dimensional structures: (i) The first structure contains the list of the neighbors one by 
one from the first vertex to the last vertex. (ii) The second structure contains starting 
positions of the neighbor lists. The second part is a helper structure to process the 
first structure. Using this two arrays and the size of the second array, the implemented 
OpenCL kernel code can calculate the circles. 
In case of the OpenCL language, the code which runs on the GPU is separated from 
the host code. The host code is responsible to read the kernel code, compile it and 
pass it to the GPU. The two new structures has to be passed to the GPU from the host. 
 

 
Figure 2. 

Process flow diagram of CPU-GPU parallel working 
 
Processing the input graph is applied in several steps. In one step, only a part of the 
vertices is processed. The process is repeated until each vertex has been processed. 
This periodic working has two main advantages: (i) there is no need for a huge buffer 
size, (ii) the result buffer can be processed, while the kernel searches for new results. 
Overlapping the phases of the graph transformation also helps in reducing the overall 
time needed. We can process the results in parallel while searching for more circles. 
Whilst the GPU is working the CPU can process the result to remove the duplicated 
circles and print them. As soon as the kernel finishes a work package, the results can 
be processed. Since the algorithm works with numbers instead of the words the 
hashing process shall be inverted when processing the results. Then, the result can be 
added to the result hash table similarly to the CPU version. We must also ensure that 
there is no circle added to the hash two times. 
We tested the algorithm with five and six length circles. We repeated the test several 
times with the same input data for getting accurate results. The time needed to find 
the circles (after the input data is processed and the graph is prepared) is 159 and 
2041 second in case of CPU-based version and 101 and 1224 second in case of the 



GPU-based version. As it can be seen, parallel computing resulted in much better 
(50%+) performance. 

CONCLUSION 

Model-driven approach often build on an efficient model transformation engine. 
GPU-based graph transformation is a way to achieve this. Although GPGPU requires 
a different description of problems to solve, we have shown in this paper that it can 
be done. Our results show more than 50% advantage of the GPU. We can say that the 
path seems promising. The first aim in the future is to test the algorithm with other 
problems in order to obtain more results and achieve a more general and robust 
algorithm. 
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