
USING GPGPU FOR GRAPH TRANSFORMATIONS –
AN INTRODUCTORY SURVEY

Tamás Fekete1, Gergely Mezei2
MSc, software engineer, PhD, associate professor

evosoft Hungary Kft, Budapest University of Technology and Economics

ABSTRACT

Using model transformations is a relatively young research field. Since a graph can
be used very well to describe the structure of a model, model transformation is often
applied by graph transformation. Graph transformation is an NP-complete problem,
thus the size of the pattern to search for can heavily affect the transformation time.
Nowadays, when we tend to use highly complex and large models, thus computing
the results can be very slow. When applying graph transformations in a usual personal
computer or a notebook, it is an important challenge to reduce the time and memory
of the computation, thus, a new way of calculation is required. In this paper, we
present a new approach for graph transformations that can use the computing power
of GPUs efficiently. We illustrate the mechanism of the new approach by a simple
model transformation case study. We provide solutions to the case study by both a
classical, CPU-based graph transformation and our new approach. The two solutions
are compared and conclusions are drawn.

INTRODUCTION

Recently model driven engineering became a popular software development
methodology in the software industry to develop complex systems. To reduce the cost
of a development and increase the complexity of the system is one of the most
important goals of each software development project. MDE refers to the systematic
use of models as primary engineering artifacts throughout the engineering lifecycle.
Model transformation is used to ensure consistency between the models and to
process models. Model transformation is described in many articles and studies, for
example in [1]. Model transformation is a basic concept in model-driven engineering
and it works mainly on domain models.
Model transformations can be considered as programs which use models as input and
as output. For writing a model transformation program, any general purpose program
language can be used like C++ or Java, but specialized model transformation
languages are also available. In most of the cases, models can be represented as
graphs and in this case we can use graph transformations to modify or process the
models. Graph transformation is based on graph rewriting, which means applying
graph rewriting rules. A rewriting rule consists usually a left-hand side, i.e. a pattern
to find, and a right-hand size, which is the replacement of the pattern found. In
general, graph transformation is an NP hard problem, because the algorithm has to
iterate through each element of the graph several times to find the pattern.
In case of real-life models, we have a large amount of model elements, which results
in slow model transformations. Since we cannot reduce the complexity of graph

DOI: 10.26649/musci.2015.048

transformations in general, applying the transformation in parallel is a promising way
to reduce the time needed by the calculation. For parallel calculation the graphics
processing unit (GPU) can be used along with the CPU. GPU-accelerated computing
is the use of a GPU together with a CPU to accelerate the transformation. Comparing
the CPU and the GPU, the first one consists of a few cores optimized for sequential
serial processing, while a GPU has a massively parallel architecture consisting of
thousands of smaller, more efficient cores designed for handling multiple tasks
simultaneously.
In this paper, we describe a model transformation case study and its solution with two
different kind of implementations. As first, we solve the task by using usual graph
transformation techniques running on the CPU, after that we provide a solution based
on GPGPU programming.

RELATED WORK

There are several papers and studies which collect and classify the model
transformation tools. In [2] there are several tools described for example Edapt,
GrGen.Net, Groove, Henshin, MOLA and Viatra2. [3] is another study elaborating
the features of several tools. In case of simpler models, there is no real need for
parallel calculation in general. However, in case of bigger inputs, or more complex
patterns, the calculation can slow down to an unacceptable level and thus new
methods are needed. One way of accelerating the transformations is to use the
remarkable computing power of modern GPUs. Many of the existing tools use graph
transformation as a model transformation but none of them can use the computing
power of a GPU or APU. Although parallel calculation becomes more popular and
more frequently used recently, existing graph transformation approaches do not really
follow this trend.
However, if we widen our focus to graph algorithms in general, we can find GPU-
based solutions. The paper [4] presents an optimized CPU-GPU implementation for
finding Euler circuit on a randomly generated Eulerian graph. The graph consist 4096
vertices and 1.7 million edges and their algorithm can find the Euler circuits about 1
seconds. The GPU-based implementation is 50 times faster than the best sequential
CPU implementation.

GPGPU PROGRAMMING AND OPENCL LANGUAGE IN NUTSHELL

Using the CPU for general calculations is the general practice as much as using the
Graphic Processing Unit for computer graphic computations. The idea of using GPU
in general, computing intensive algorithms became natural a few years ago. The most
frequently used stream in case of GPUs is a 2D grid and for example, graph can be
mapped into 2D grid and processed effectively. Nowadays plenty of research group
works with GPGPU programming.
The OpenCL framework [5] is the most popular open general-purpose GPU
computing language. OpenCL provides only a general interface and each hardware-
vendor has to have its own implementation. The main advantage of using OpenCL is
that it can be executed across heterogeneous platforms (CPU, GPU, DSP, FPGA).
The base API is written in C language.

GRAPH TRANSFORMATION WITH GPGPU

Description of the case study

In our case, the input model is a unidirectional translation graph which is created from
a freely available Wiktionary dictionary [6]. Wiktionary is a multilingual dictionary
containing words of several languages. More precisely, there are words and
expressions in the dictionary as well. For the sake of simplicity, we will refer them
as words from now on. In our case, the input data consists of word pairs, which are
translations of each other e.g. “HU Alma” – “EN Apple”. The input dictionary
contains 514 047 pairs of words. From this input, we build a graph. Each vertex in
the graph is a word and the edges mean their translations. Words can occur several
times in the input file as a word can have multiple translations. It is also possible to
have pairs containing different words from the same language (i.e. synonyms).
During processing, there is no filtering used for the input pairs, each element of the
input dictionary are processed.
In our case, the task is to find paths between vertices. There are some existing
algorithms for finding even cycles. For example, in the [7], an efficient algorithm is
described to find even cycles in undirected graph. In this paper we fixed the length
of the paths to five, but later we tested our solutions with several other fixed lengths
as well. Searching of the patterns must be made exhaustively. One path between two
vertices means that they are probably synonyms to each other. In case of two disjoint
paths, the two words are more probably synonyms. Therefore, we focus on finding
circles of the given length.

Implementation of the graph transformation algorithm into CPU calculation

We used Microsoft Visual Studio 2013, C++ language with STL library and its MS
Windows STL extension on an Intel Core i3 CPU. From the performance point of
view, choosing an appropriate data structure is one of the most important task. The
algorithm has three main phases: (i) reading the input data from the input file and
create the model graph, (ii) finding the circles and (iii) processing the result and
printing the output.
It is much easier and faster to work with integer numbers than with strings, therefore
each word is mapped to an integer number at the beginning of the algorithm. We
convert these integer codes back to words at the end of the algorithm.
The model graph is represented as a hash map, where we store the ID of the vertex
and the list of their neighbors. The advantage of using a hash map is that finding an
element based on its ID requires O(1) time. Although we use a little bit more memory
this way, the time is more critical in this scenario.
There are several ways to find circles in a graph. Using a recursive solution is
probably not the best solution here because stack overflow can occur easily if the
length of the circles are large. Thus, we iterate through all the vertices and start four
embedded loops from them as it can be seen below. To store the results, we use a
hash table. Before adding a new circle to the table, we check whether it is already
contained in the hash table or not and thus circle duplication can be avoided.

The pseudo code of finding five length circles in the graph is the following:

for (vertex in all vertices)
 for (n1 in neighbours of vertex)
 for (n2 in neighbours of n1)
 for (n3 in neighbours of n2)
 for (n4 in neighbours of n3)
 for (n5 in neighbours of n4)
 if n5 == vertex then
 order (n1, n2, n3, n4, n5) in VerRes array
 if VerRes not is stored
 add Vertices to the results

At the end of the algorithm, we obtain the list of fixed length circles, namely the
results. The algorithm convert the data back from numbers into the original words
and prints the result into the output file.

Implementation of the graph transformation algorithm into CPU-GPU calculation

In the GPU-based approach, an NVIDIA 710M video graphic card was used. To build
the working environment the OpenCL header definition must be downloaded from
the Khronos web site and its NVIDIA implementation from the NVIDIA's website.
The libraries can be found in the CUDA development environment. Since NVIDIA
supports OpenCL 1.1 version only, we were restricted to use this version.
The implementation of the GPU version is similar to the CPU version in some steps
but there are several differences at the same time. In this case, there are three main
phases: (i) reading the input graph as it is done in the implementation for CPU, (ii)
creating and running the OpenCL kernel several times and (iii) processing the result
and print it into an output file.
At the beginning of the algorithm, we convert the graph into a special array format
which can be passed to the GPU. The best input of the GPU is a one dimensional
array, or a set of such arrays. To achieve the format, the graph is converted as
illustrated in Figure 1.

Figure 1.

New data structure which can be passed to the GPU card

The original, two dimensional structure of the graph is mapped into two one
dimensional structures: (i) The first structure contains the list of the neighbors one by
one from the first vertex to the last vertex. (ii) The second structure contains starting
positions of the neighbor lists. The second part is a helper structure to process the
first structure. Using this two arrays and the size of the second array, the implemented
OpenCL kernel code can calculate the circles.
In case of the OpenCL language, the code which runs on the GPU is separated from
the host code. The host code is responsible to read the kernel code, compile it and
pass it to the GPU. The two new structures has to be passed to the GPU from the host.

Figure 2.

Process flow diagram of CPU-GPU parallel working

Processing the input graph is applied in several steps. In one step, only a part of the
vertices is processed. The process is repeated until each vertex has been processed.
This periodic working has two main advantages: (i) there is no need for a huge buffer
size, (ii) the result buffer can be processed, while the kernel searches for new results.
Overlapping the phases of the graph transformation also helps in reducing the overall
time needed. We can process the results in parallel while searching for more circles.
Whilst the GPU is working the CPU can process the result to remove the duplicated
circles and print them. As soon as the kernel finishes a work package, the results can
be processed. Since the algorithm works with numbers instead of the words the
hashing process shall be inverted when processing the results. Then, the result can be
added to the result hash table similarly to the CPU version. We must also ensure that
there is no circle added to the hash two times.
We tested the algorithm with five and six length circles. We repeated the test several
times with the same input data for getting accurate results. The time needed to find
the circles (after the input data is processed and the graph is prepared) is 159 and
2041 second in case of CPU-based version and 101 and 1224 second in case of the

GPU-based version. As it can be seen, parallel computing resulted in much better
(50%+) performance.

CONCLUSION

Model-driven approach often build on an efficient model transformation engine.
GPU-based graph transformation is a way to achieve this. Although GPGPU requires
a different description of problems to solve, we have shown in this paper that it can
be done. Our results show more than 50% advantage of the GPU. We can say that the
path seems promising. The first aim in the future is to test the algorithm with other
problems in order to obtain more results and achieve a more general and robust
algorithm.

ACKNOWLEDGEMENT

This work was partially supported by the European Union and the European Social
Fund through project FuturICT.hu (grant no.: TAMOP-4.2.2.C-11/1/KONV-2012-
0013) organized by VIKING Zrt. Balatonfüred.

REFERENCES

[1] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp: A Taxonomy of Model
Transformations. Proc. Dagstuhl Seminar on "Language Engineering for
Model-Driven Software Development". Internationales Begegnungs- und
Forschungszentrum (IBFI), Schloss Dagstuhl

[2] Edgar Jakumeit, Sebastian Buchwalda, Dennis Wagelaarb, Li Danc, Ábel
Hegedüsd, Markus Herrmannsdörfere, Tassilo Hornf, Elina Kalninag, Christian
Krauseh, Kevin Lanoi, Markus Lepper , Arend Rensinkj, Louis Rosek, Sebastian
Wätzoldth, Steffen Mazanek: A survey and comparison of transformation
tools based on the transformation tool contest. Science of Computer
Programming Volume 85, Part A, 1 June 2014, Pages 41–99 Special issue on
Experimental Software Engineering in the Cloud (ESEiC)

[3] Louis M. Rose, Markus Herrmannsdoerfer, Steffen Mazanek, Pieter Van Gorp,
SebastianBuchwald, Tassilo Horn, Elina Kalnina, Andreas Koch, Kevin Lano,
Bernhard Schätz, Manuel Wimmer: Graph and model transformation tools
for model migration Empirical results from the transformation tool contest.
Received: 2 April 2011 / Revised: 27 February 2012 / Accepted: 5 March 2012
/ Published online: 18 April 2012 © Springer-Verlag 2012

[4] Jiachun Ye ; Sch. of Comput. Eng. & Sci., Shanghai Univ., Shanghai, China ;
SongnianYu: Accelerating finding euler circuit on CPU-GPGPU
heterogeneous architecture. Mechatronic Science, Electric Engineering and
Computer (MEC), 2011 International Conference on

[5] The Khronos Group: https://www.khronos.org/opencl/
[6] Wiktionary: https://en.wiktionary.org/
[7] Raphael Yuster and Uri Zwick: Finding Even Cycles Even Faster. SIAM J.

Discrete Math., 10(2), 209–222. (14 pages)

https://www.khronos.org/opencl/
https://en.wiktionary.org/

	__DdeLink__474_756482176

