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Abstract: The main objective of this paper is the calculation of the 

thermomechanical stresses and displacements in functionally graded hollow 

spherical bodies subjected to thermal and mechanical loadings. The material 

properties are described as power functions of the radial coordinate and the Poisson 

ratio is constant. It is assumed that the temperature field and the displacement field 

depend only on the radial coordinate. The analytical solution is derived via the 

solution for a system of diferential equations which contains a stress function and 

the displacement field as unknowns. 

1. INTRODUCTION

This paper investigates a thermoelastic problem of a functionally graded 

spherical body. The geometry of the investigated body can be seen in Fig. 1, where 

the inner radius of the sphere is R1, the outer radius is denoted by R2. In order to 

solve this problem a spherical coordinate system Or  is used. First kind thermal 

boundary conditions are prescribed on the inner and outer spherical surfaces. These 

constants are non-time dependent given temperature values and they are denoted by 

t1 and t2. It follows that the temperature field t is the function of the radial 

coordinate r. The uniformly distributed pressure exerted on the inner boundary 

surface is denoted by p1, while p2 is the uniformly distributed  pressure which acts 

on the outer spherical boundary surface.  

Fig. 1. The functionally graded spherical hollow body. 
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The material properties are given as 
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where E is the Young modulus, α is the coefficient of linear thermal expansion, λ is 

the thermal conductivity, r is the radial coordinate, E0, α0, λ0, m1, m2 and m3 are 

material constants, furthermore the Poisson ratio ν is constant. 

It is assumed that the radial stresses, the heatflow and the temperature field are 

all continuous functions of the radial coordinate. Our aim is to determine the 

displacement field and normal stresses within the spherical component. 

 

 

2. FORMULATION OF THE PROBLEM 

 
The first step is the calculation of the temperature field when the thermal 

conductivity is prescribed by Eq. (1). In our problem the first kind thermal 

boundary conditions are 
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In this case the temperature difference field 0( ) ( )T r t r t   has the following 

form [1]: 
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We note that 0t  denotes the reference temperature at which the body is stress free 

if there is no deformation and 0 ( 1,2).i iT t t i    

The radial and tangential normal strains ,r      and the stress-strain relations 

for a spherical body can be formulated as [2, 3]: 
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where u=u(r) is the radial displacement field, σr(r) is the function of radial normal 

stress and σφ(r) is the tangential stress. The equilibrium equation in the radial 

direction of the spherical body has the following form [2, 3]: 
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We reformulate Eq. (7) in the next form 
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therefore the normal stresses can be expressed in terms of the stress function V=V(r) 

as 

 

 
2

1
, ,

2
r

V dV

r r dr
      

1 2.R r R   (9) 

 

After some manipulations from Eqs. (5-7) and (9) we can derive the next system 

of ordinary differential equations for the displacement field and the stress function 
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Considering the functions of the material properties given by Eq. (1) the final 

form for the system of differential equations can be expressed as: 
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The general solutions of the radial displacement field and the stress function are 

power functions of the radial coordinate. The homogeneus solutions are assumed to 

have the following forms: 
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Applying Eqs. (12) to Eqs. (11) we get the next system of linear equations for the 

the constants 1 2andC C  

 



 
10

20
1

2 (1 2 )(1 )

0(1 ) (1 )

02 2
( 1)

1 1

CE

CE
m

  


 




 

  
      

     
    

      

 (13) 

 

 

From the solutions for the previously presented system of equations it follows 

that 
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The following notations will be used for the computation of the particular 

solutions: 
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The first particular solution is obtained the next system of differential equations: 
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and we have 
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The remaining particular solutions can be represented as 
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The summarized form of the general solution for the displacement field and the 

stress function are as follows 
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In order to determine the unknown C1 and C2 constants the next stress boundary 

conditions will be used: 
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4. NUMERICAL EXAMPLES 

 

For the numerical example the following data are used: 
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Figs. 4-6 indicate the results of this problem, which was solved by Maple 15, for 

three cases ( 0.1,1,3).m   

 

 

 

Figure 4. The radial displacement fields. 

 

 

Figure 5. The radial normal stresses. 

 



In Figs. 4-6 the red solid lines are the results of the thermomechanical problem 

with m=0.1, the blue lines indicate the results for the case when m=3. The green 

dash lines illustrate the functions when m=1. 
 

 

 

Figure 6. The tangential normal stresses of the three cases. 

 

5. CONCLUSIONS 

 

The main objective of this paper was to present an analytical solution for the 

displacement field and the associated stresses in functionally graded spherical 

bodies subjected to mechanical and thermal loads. To solve this problem a system 

of ordinary diferential equations is derived which contains a stress function and the 

displacement field as unknowns. The developed solution can be utilized as 

Benchmark solutions for numerical methods to verify the accuracy of the 

considered numerical methods. 
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