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Abstract 
This paper gives an analytical solution for deflection, slip and internal 
forces in composite beams with weak shear connection. The applied 
loads are the mechanical and thermal load. The thermal load is caused by 
uniform temperature change and the considered beam is statically 
indeterminate. The Euler-Bernoulli beam hypothesis is assumed to hold 
for both two beam components. The constitutive equation between the 
horizontal slip and inter-laminar shear force is linear. An example 
illustrates the application of presented method. 

1. INTRODUCTION

The paper deals with the solution of static problem of two-layer composite beam 
with weak shear connection. The considered beam and its load are shown in Fig. 1. 
The beam carries the uniform mechanical load at high temperature, so that the 
temperature change 0T t t  , where t  is the absolute temperature of the beam and 

0t  is the reference temperature at which no deformation and the beam is stress free. 
The presented analytical solution is based on the Euler-Bernoulli beam theory and 
the one-dimensional version of Duhamel-Neumann’s law [1,2]. The beam 
component iB  has a rectangular cross section iA  whose dimensions are ih  and b  
( 1,2)i   as presented in Fig. 1. The modulus of elasticity for beam component iB  is 

iE  and the linear thermal expansion coefficient is i  ( 1,2)i  . The length of the 
beam is denoted by L  and the cross section at 0z   is fixed and the cross section at 
z L  is simply supported. The origin O  of the rectangular Cartesian coordinate 
system Oxyz  is the E-weighted centre of the left end cross section, so that the axis z  
is the E-weighted centre line of the considered composite beam with flexible shear 
connection. A point P  in 1 2B B B   is indicated by the position vector 

x y zOP x y z   r e e e


, where , ,x y ze e e  are the unit vectors of the coordinate system 
.Oxyz  It is known the position of E-weighted cross section is obtained from next 

equation (Fig. 1) 

 2 2 1 1 1 2
1 1 2 2 1 2 1 1 2 2, , , .

2
A E A E h hc CC c c CC c C C c AE A E A E
AE AE


       
  

 (1)

DOI: 10.26649/musci.2015.066



The common boundary of the beam components 1B  and 2B  is determined by 

12 1 10.5 ,y y c h    0.5 ,x b  0 .z L   

 
 

Figure 1. Two-layer composite beam 
 
2. GOVERNING EQUATIONS 
 
According to the Euler-Bernoulli beam theory, which is valid for each 
homogeneous beam components, the deformed configuration is described by the 
next displacement field 

 d( , , ) ( ) ( ) , ( , , ) , ( 1,2).
dy i z i
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z
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On the common boundary of 1B  and 2B  the axial displacement may have jump 
which is called the interlayer slip 
 
 1 2( ) ( ) ( ).s z w z w z   (3) 
 
Application of the strain displacement relationship of the linearized theory of 
elasticity gives [1,2] 
 
 0, ( , , ) ,x y xy yz xz x y z B           (4) 
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where , ,x y z    are the normal strains, , ,xy xz yz    denote the shearing strains. The 
normal stress z  is obtained from the one-dimensional version of Duhamel-
Neumann’s law [1,2] 
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The temperature of the two-layer composite beam initially is the reference 
temperature 0.t  Its temperature is slowly raised to constant uniform temperature 

0 .t t T   Below we define the section forces and section moments [3] (Fig. 2) 
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 2d , ( 1,2).
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Figure 2. Normal forces and bending moments 
 
The interlayer slip s  is assumed to be a linear function of shear force transmitted 
between the two beam components that is we have [3,4] 
 
 ,Q ks  (10) 
 
where k  is the slip modulus. In the present problem there are no axial forces, so 

1 2 0,N N N    that is 
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Combination of Eq. (3) with Eq. (11) provides 
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where 
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The bending moment on the whole cross section can be expressed as 
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The cross sectional shear force is as follows 
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From the equilibrium condition of a small beam element 1B  (Fig. 3) we receive 
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Figure 3. Equilibrium condition in axial direction 
 
In detailed form of Eq. (17) 
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Combination of Eq. (16) with Eq. (18) results 
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The cross sectional rotation in terms of deflection is 
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according to the Euler-Bernoulli beam theory. From Eq. (15) we get 
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Integration of Eq. (23) yields the expression of ( )v v z  
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Eqs. (20), (23) and (24) with the boundary conditions give the possibility to obtain 
the deflection, slip and cross sectional rotation. The application of followed method 
is illustrated by the solution of problem depicted in Fig. 1. 
 
3. EXAMPLE 
 
Denote F  the unknown reaction at .z L  By the application of equation of statics 
we gain 
  ( ) ,V z F f z L    (25) 

    2( ) .
2
fM z F z L z L     (26) 

 
The boundary conditions in our case are 
 
 1(0) 0, (0) 0, (0) 0, ( ) 0, ( ) 0.v s v L N L      (27) 
 
It can be proved that from Eq. (27)5 and ( ) 0M L   it follows that 
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Eqs. (24), (27)3 and Eq. (28) can be used to get the solution of Eq. (19) in terms of 

.F  Substitution of expression of ( )s s z  into Eq. (26) and using the boundary 
conditions (27)1, (27)2 and (27)4 we get the value of the reaction ,F  which 



essentially the solution of the considered problem since ( ),V V z  ( )M M z  will be 
known functions. The following numerical data are used in the example: 

1 0.03 m,h   2 0.06 m,h   10
1 1.22 10 Pa,E    10

2 8 10 Pa,E    0.01 m,b   1.5 m,L   
76 10 Pa,k    6

1 2.8 10 1/ K,    5
2 1.43 10 1/ K,    250 K,T   1000 N.f   The 

computations result for the reaction at ,z L  255.70048 N.F    In Fig. 4 the graph 
of deflection function and in Fig. 5 the graph of slip function are shown for 0,f   

0.T   The plots of bending moment ( )M M z  obtained from formula (15) and 
formula (26) are illustrated in Fig. 6 for 0,f   0.T   The plot of the axial force 

1 1( )N N z  is presented in Fig. 7 for 0,f   0.T   If there is no applied thermal load 
then 1000 Nf   and 0,T   the plot of ( )v v z  and ( )s s z  are shown in Figs. 8 and 
9. In this case the bending moment ( )M M z  and axial forces can be seen in Figs. 
10 and 11. 

 
 

Figure 4. The graph of ( )v v z   0, 0f T   
 

 
Figure 5. The graph of ( )s s z   0, 0f T   

 
4. CONCLUSIONS 
 
This paper presents an analytical method to obtain the deflection, slip and internal 
forces for composite beams with weak shear connection subjected to mechanical 
and thermal load. The solution of this strength of materials problem can be used to 
design composite beams with imperfect connection working in high temperature. 
 

 



 
 

Figure 6. The plot of ( )M M z   0, 0f T   
 

 
Figure 7. The plot of 1 1( )N N z   0, 0f T   

 

 
Figure 8. The plot of ( )v v z   0, 0f T   

 

Figure 9. The plot of ( )s s z   0, 0f T   



 
 

Figure 10. The graph of ( )M M z   0, 0f T   
 

 
Figure 11. The graph of 1 1( )N N z   0, 0f T   
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