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1. INTRODUCTION

A number of papers have been devoted to the stability problem of circular plates
though only a few have dealt with the influence of stiffening.

There are various methods for increasing the resistance of a circular plate to buck-
ling. For example, one can apply an internal ring support, which can be either rigid
or elastic. Thevendran and Wang have examined the buckling problem of annular
plates which are simply supported with elastic rotational restrains at the inner or
outer boundary [1]. Laura et al. have investigated the buckling of circular, solid
and annular plates with an intermediate circular support under the assumption of ax-
isymmetric deformations [2]. By the use of the Kirchhoff-Love plate theory [3] and
the Mindlin–Reissner theory [4] Wang and his co-authors studied the same structure
under the assumption of non-axisymmetric deformations. Rao and Rao have analysed
the buckling of circular plates which are supported along concentric rings. The sup-
ports applied are simple or translational and/or torsional elastic restrains [5, 6]. The
authors have also investigated a circular plate with elastic foundation [7].

We can also use discrete stiffeners, which are applied to the plates. The effect on
stability of a ring stiffener on the boundary of a circular plate has been investigated
by Phillips and Carney [8]. Rossettos and Miller have investigated symmetric and
asymmetric buckling of a circular plate which is stiffened by a ring at an internal
radius [9, 10]. The axial rigidity of the stiffening ring has been ignored. Frostig and
Simitses have examined a similar structure but they have not used the simplifications
of the aforementioned article [11, 12]. The stiffening ring is modeled as a curved
beam.

Szilassy dealt with the stability of circular and annular plates stiffened by a cylin-
drical shell on its outer boundary in his PhD. thesis [13] and in a further article [14].
It was assumed that (i) the load is an in-plane axisymmetric dead one and (ii) the
deformations of the annular plate and the cylindrical shell are also axisymmetric.

The present paper deals with the axisymmetric and non axisymmetric buckling of
annular plates which are stiffened by a cylindrical shell on the outer boundary, and an
elastic restrain against torsion is attached on the inner boundary. The paper outlines
the basic assumptions, the governing equations as well as the boundary and continuity
conditions. Numerical results are also shown. These represent the influence of shell
geometry on buckling load. As regards the cylindrical shell we shall utilize some
results from Vlasov [15].
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2. PROBLEM FORMULATION

We shall examine the buckling of the structure shown in Fig. 1. The structure is
subjected to a constant radial load in the middle plane of the plate. A circular shell is
attached on the outer boundary while a torsional spring support is applied along the
inner boundary.
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Figure 1. The structure and its load

We shall assume that the plate and the shell are thin, consequently we can apply the
Kirchhoff theory of plates and shells. It is a further assumption that the shell and plate
are made of the same isotropic material for which E and ν are the Young-modulus
and the Poisson ratio, respectively. Heat effects are not taken into account.

Under the assumption of small, non-axisymmetric and linearly elastic deflection
we shall determine (a) the critical buckling load of the structure and (b) how does the
shell stiffening affect the critical load.

The deformation of the structural elements is analysed separately in the cylindrical
coordinate system (R,ϕ, z) used for the equations of the plate and in the coordinate
system (ζ, ϕ, x) for the cylindrical shell. The coordinate systems are shown in Fig. 2.
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Figure 2. Coordinate systems

3. EQUATIONS FOR THE PLATE

We separate the structural elements in order to solve the problem. Fig 3. shows
the plate and the cylindrical shell together with the in-plane forces fo and f which are
acting between these elements.
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Figure 3. Free body diagram for plate and shell

The inner forces NR, Nϕ, NRϕ in the plate are axisymmetric because the in-plane
load exerted on the outer boundary is axisymmetric as well. Introducing the dimen-
sionless coordinate ρ = R

Re
, the inner forces take the form

NR = −A+
B

ρ2
, Nϕ = −A− B

ρ2
, NRϕ = 0 . (1)

The constants A and B depend on the boundary conditions. For an annular plate with
free outer boundary we obtain

A = f
1

1− ρ2i
, B = f

ρ2i
1− ρ2i

(2)

respectively, where ρi = Ri/Re. The radial displacement is given by the formula

u =
ρRe
bpE

[
−A (1− ν)− B

ρ2
(1 + ν)

]
. (3)

The deflection w of the plate should fulfill the differential equation

I1E14̃4̃w −
[
NR

∂2w

∂ρ2
+ 2NRϕ

∂

∂ρ

(
1

ρ

∂w

∂ϕ

)
+Nϕ

(
1

ρ

∂w

∂ρ
+

1

ρ2
∂2w

∂ϕ2

)]
= 0 , (4)

where

4̃ =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2
∂2

∂ϕ2
, I1 =

b3p
12

, E1 =
E

1− ν2
, (5)

and bp is the thickness of the plate. We expand the solution for w in a Fourier series
of the form

w = wo +

1∑
m=0

∞∑
n=1

m
wn (ρ) cos

(
nϕ−mπ

2

)
(6)

and substitute it into (4). We obtain that the amplitudes wo(ρ) and m
wn(ρ) should fulfill

the following differential equations:(
d4

dρ4
+

2

ρ
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dρ3
− 1 + 2n2

ρ2
d2

dρ2
+
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d
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R2
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∂ρ2
+Nϕ

R2
k

I1E1

[
1

ρ

∂

∂ρ
− n2

ρ2

])
m
wn = 0 ; m = 0, 1, n = 0, 1, 2, . . . (7)



The solutions of the equations are sought by an appropriate numerical method.
The rotation ψϕ, the bending moment MR and the shear force QR are given by the

relations

ϑ = − 1

Re

dw

dρ
, MR = −

I1pE1p

R2
e

[
∂2w

∂ρ2
+
νp
ρ

(
∂w

∂ρ
+

1

ρ

∂2w

∂ϕ2

)]
, (8a)

QR = I1pE1p
1

R3
e

∂

∂ρ

(
4̃w
)
− NR
Re

∂w

∂ρ
. (8b)

These physical quantities can be written in the same form as the series (6). It is
obvious that the amplitude functions of ψϕ, MR and QR can all be given in terms of
the m

wn amplitudes of w – the details are omitted here.

4. EQUATIONS FOR THE CYLINDRICAL SHELL

Assuming that the shell is subjected to a radial load, the fundamental equations
set up for the displacement coordinates uξ, uϕ and uζ will be fulfilled identically if
we calculate the displacement coordinates from the Galerkin function φ using the
relations [16]

uξ =
∂3φ

∂ξ∂ϕ2
− ν ∂

3φ

∂ξ3
, uϕ = −∂

3φ

∂ϕ3
− (2 + ν)

∂3φ

∂ξ2∂ϕ
, uζ = ∇2∇2φ , (9)

where φ should satisfy the following DE (the distributed load pz = 0!):

∇2∇2∇2∇2φ+ 4β2
∂4φ

∂ξ4
=

4β4R2
s

Ebs
pz = 0 , ∇2 =

∂2

∂ξ2
+

∂2

∂ϕ2
, β4 = 3

(
1− ν2

) R2
s

b2s
.

(10)
The physical quantities in the shell set up for the displacement field can also be given
in terms of the Galerkin function. The following relations present those which appear
in the boundary and continuity conditions:

ψϕ =
1

Re

∂

∂ξ
∇2∇2φ , Nxx =

Ebs
Re

∂4φ

∂ξ2∂ϕ2
, Nϕx = −Ebs

Re

∂4φ

∂ξ3∂ϕ
, (11a)

Mxx = −Ebs
4β̂4

[
∂2

∂ξ2
+ νs

∂2

∂ϕ2

]
∇2∇2φ , Mxϕ = −Ebs (1− νs)

4β̂4

∂2

∂ξ∂ϕ
∇2∇2φ , (11b)

Qxζ =
1

Re

Ebs

4β̂4

∂

∂ξ
∇2∇2∇2φ , (11c)

(11d)

Similarly to equation (6) we also assume that φ is expanded in a Fourier series:

φ (ξ, ϕ) = φo (ξ) +

1∑
m=0

∞∑
n=1

m
φ n (ξ) cos

(
nϕ−mπ

2

)
. (12)

After substituting (12) into (10) we obtain the differential equations for the Fourier
coefficients. It can also be shown that the real solution for them take the form

m
φ n =

2∑
k=1

[m
Knk sinh (βnkξ) sin (αnkξ) +

m
Mnk sinh (βnk) cos (αnkξ) +

+
m
Pnk cosh (βnkξ) sin (αnkξ) +

m
Snk cosh (βnkξ) cos (αnkξ)

]
, (13)



where αnk and βnk are some characteristic values obtained from the characteristic
polynomial of the aforementioned equations. The quantities

m
Mnk, . . . ,

m
Jnk constitute

altogether eight integration constants.
Every physical quantity in the shell can be written in a form similar to that of Eq.

(6) – we should write ξ instead of ρ there. The coefficients of these can be given in

terms of φo and
m
φ n.

5. BOUNDARY- AND CONTINUITY CONDTIONS

A solution for the amplitude of the displacement field on the middle surface of

the plate contains four, while a solution for
m
φn involves eight integration constants.

The shell is divided in two separate parts on the intersection line of the structural
elements. Therefore we need two solutions, one for each shell part, consequently we
have to determine altogether 20 integration constants.

The radial displacement is axisymmetric, i.e., muζ n (ξ = 0) = 0 if n 6= 0. Conse-

quently we cannot prescribe any condition for the shear force
m
Qxz n.

Since the plane stress problem is axisymmetric, mvn (ρ = 1) =
m
uϕ n (ξ = 0) = 0 as

well. Consequently, we cannot prescribe continuity conditions for the inner forces
m
NRϕ n and

m
Nxϕ n. However, the axisymmetric parts of these quantities are zero.

The shell and plate deform together on the intersection line of the middle surfaces of
the shell and the plate, so it is clear that the following kinematic continuity conditions
should also be fulfilled:

uξ (ξ = 0) = −w (ρ = 1) , ϑ (ξ = 0) = ψϕ (ρ = 1) . (14)

It follows from the global equilibrium of the structure that the axisymmetric part
of the shear force should meet the condition QRo = 0. Otherwise the continuity
condition

QR (ρ = 1)−Nxx (ξ = +0) +Nxx (ξ = −0) = 0 (15a)

should be fulfilled. As regards the bending moments equation

MR (ρ = 1)−Mxx (ξ = +0) +Mxx (ξ = −0) = 0 (15b)

is the continuity condition.
The inner boundary of the plate is elastically restrained, and deflection is restrained.

The boundary conditions therefore are

w (ρ = ρi) = 0 , MR (ρ = ρi) = kϑ (ρ = ρi) . (16)

where k is the spring constant of the torsional spring. In the computation we use the
dimensionless K = kRe

I1E1
.

Since the boundaries of the shell with coordinates ξ = ±h/Re are free, the following
boundary conditions should be satisfied:

Nxx (ξ = ±h/Re) = 0 , Nxϕ +Mxϕ/Re (ξ = ±h/Re) = 0 , (17a)

Mxx (ξ = ±h/Re) = 0 , Qxz −
1

Re

d

dϕ
Mxϕ (ξ = ±h/Re) = 0 . (17b)



The boundary- and continuity conditions provide twenty homogenous algebraic
equations for the 20 integration constants. These equations involve fo as a param-
eter. The critical value of fo can be determined from the condition that the system
determinant should vanish.

6. NUMERICAL RESULTS

The computational results for the problem we have established above are presented
in the following figures. The graphs show the critical loads Fo of the structure against
the height of the shell.

We can observe the influence of the spring constant in Figure 4. In the two limiting
cases (if K = 0 and K → ∞) the results are the same as for simply supported and
clamped inner boundary.
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Figure 4. Critical loads for various spring constants, n = 0, . . . , 3



In Figure 5. the influence of the inner radius is presented. We can notice that the
critical load belongs to non-axisymmetric deformations if the shell height is below a
certain limit. This limit increases if the inner radius is getting larger.
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Figure 5. Critical loads for various values of n, K = 10, ρ = 0.25, 0.5, 0.75

7. CONCLUDING REMARKS

The present paper has established the equations that can be used to determine the
critical load of annular plates stiffened by a cylindrical shell and elastically supported
under the assumption of axisymmetric and non-axisymmetric deformations. We have
clarified what the continuity conditions are between the two separate elements of the
structure. We have also presented the solutions for the critical load of the solid circular
plate assuming axisymmetric and non-axisymmetric deformations. It is obvious from
the results that the stiffening significantly increases the critical load.
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