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INTRODUCTION

For the simulation calculations of cooling circuit the thermal and caloric status
indicators of refrigerants and the relationships between them must be known.
Therefore, we aimed to determine these. Here, only the fluid status change between
liquid and gaseous state and these two states will be discussed. It is assumed that we
know the mass of the fluid molecules(M ), the temperature (T, ), the pressure(p;)

and the density (pc) of the critical point, as well as the temperature of the triple
point(T,).

STATUS INDICATORS

To describe the thermal status indicators of the fluid we must know [1]:(according
to Gibbs phase rule in case of one phase two-, and in case of two phases only one
status indicator is freely selectable)

e the equation of state in gaseous phase in the p= p(p,T) form,

e the saturation vapor pressure function of temperature pg, = pe, (Tes ),
o the saturated liquid density function of temperature p, = p, (T)
e the equation of state in liquid phase inthe p, = p,(p,T) form.
In addition to the above, the ideal gas specific heat at constant pressure as a function

of temperature c,, :cpo(T)must be known for the description of the caloric state

characteristics [eB, h=¢eg +£, sj . The ideal gas phase of the fluid is considered as
Yo

the limit of p — 0.
Equations for caloric status indicators are uncertain up to a constant (h,, s, ), so the

value of the constants should be agreed on. According to the scientific literature the
value of these constants are given in saturated liquid state at 0°C, namely
h, :ZOOK—J and s, :1k—J.

kg kgK
After all these, let's see how the status indicators can be determined based on these
data if we know the density and temperature.
The determination of the pressure is initiated by investigating whether the
temperature is lower or higher than the critical temperature. If higher, the pressure
value can be calculated based on function p(p,T) valid to the gas phase . If less,

then we compute the saturated liquid and the saturated vapor density at the given
temperature T ; The saturated liquid density according to the relation of p, (T) and
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the saturated vapor density by solving equation p(p,T)= p,(T). (T is known!)
This gives the saturated vapor density, the p, (T ). We investigate the relation of the

given density to these values. If the current density is greater than the density of the
saturated liquid p > p,, the pressure can be calculated based on the relation

p=p,(o,T) which is valid in the liquid phase. If the density is lower than the
density of the saturated liquid and is greater than the saturated vapor density
P > p> p,, the pressure equals to the saturation vapor pressure p = py, (T) and if
the given density is lower than the saturated vapor density, the pressure can be
calculated from the state equation p = p(p,T) which is valid in the gas phase.

RELATIONS BETWEEN THE STATUS INDICATORS

Thermodynamics law | and Il. creates a connection between the thermal and the
caloric indicators. Consequently, for the internal energy the following equation can
be written:

de, =2 dp+Tds. (1)
o,

Expressing the entropy change from it we get

1 p
ds=—de; — dp.
T B pZT IO (2)
Writing the entropy as the function of the temperature and density s=5(p,T) and
its differential can be written as follows:

ds:ﬁ dT+§ do, (3)
oT|, op|;
similarly in case of internal energy
deB:% dT+% do. (4)
or |, op |;
Substituting equation (4) into equation (2) and comparing it to expression (3) we
can write that
ds= L8 dT+[1% _%Jdp_
%,_/
0s 0s
El’ %T

Let’s write the mixed second-order derivatives of entropy:

Os _10% _ 108 10% p 1 dp ©)
dTop ToTop T?opl, Talop p°T? pToT|,
we get
oe p T op
o T (7)
ool p- ptOT|,

Introducing nomination



oe
Fa i (®)

oT

Yol

Using equations (7) and (8) the differential of the internal energy can be expressed
de; =c,dT +{£—L@

as the following equation:
dp. 9)
p? paT J

According to Thermodynamics law | and the definition of enthalpy the differential
of enthalpy can be written as the following relation:

dh=Tds+£dp. (10)
yoj
Expressing the entropy change from it we get:
1 1

ds==dh——dp. 11

T p (11)

Writing the entropy as a function of the temperature and pressure s = S(T, p) and its
differential we can write the following:

0s oS
ds=— dT+—| dp,
aT|, opl; P (12)
similarly in case of enthalpy
dh=N g1 N gy (13)
oT|, op|;

Substituting equation (13) into equation (11) and comparing it to expression (12) we
can write that

ds= 2N grofLtony 1 g
T oT|, Top,, pT (14)
s s
ol Tl

Let’s write the mixed second-order derivatives of entropy:

d*s 1 o%h 1ohf 10°h 1 1 op
-1 T2 a0 T Tt ’ (15)
oTop T aTap  T?épl, TaTop pr? pT aT|,
and based on this we can write
oh 1 T2o
Fa bt (16)
oL p pOT|,
Introducing nomination
] 17
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the differential of enthalpy can be written as follows:
dh=c,dT + 1+l26_p dp. (18)
p p°aoT|,




Forming the differential of enthalpy according to its definition and using formula

dh=de, - 2 dp+ Ldp=c,dT+ L dp- 1 P
p p p p°aT|,
~Papitdp=cat- L P gpiLap
p p? aT|, p

o,
Writing the density as a function of the temperature and pressure, and forming its

(9) we get
do—

(19)

differential we can write
op op
d dT +-- dp.
P=or),n Tapl P (20)
Substituting it into equation (19) we get
n=(c,- T2 %0l Jar (L T ol oo gy gy
p°oT|,oT|, p p-OT|,op|

Writing the pressure as a function of the temperature and density, and forming its

differential as well as using equation (20) we get the following relations
W@m@w@u@@Jﬂ%@,ﬂ
. 0Pk aTl, op|, oT|, opl, op|, (22)
0 1
dap| 1
opl;  op| (23)
op|;
ap
op or o
| == 24
i R (24)
opl;
Based on them relation (21) can be written as follows:
ap
0
dh=|c,- L P | Tl gy, t T o0 1
praTl,l op p AT,
opl; op|;
oT
= cV+L2 LA S lza—p dp
p°op p p°oT|,
op|;

cp(p.T)
Substituting relation (22) into equation (19) we get the following expression to the

differential of enthalpy:
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Based on relation (25) the specific heat at constant pressure can be calculated
according to the following formula at known density and temperature:

2
(ap J
oT
¢, (p.T)=c,(p.T)+ L 22/ (27)
pT
op|;

The specific heat at constant volume can be calculated according the following

equation:
T

pT=f

0

do,

T

I% d,O CV0+J- p

(28)
CvO(T)
where the function in the second integral can be determined according to the

following equation:

a[p_wp J
oc,| o%, o%, \p° plOTI,
opl, 0pdT oTop ot o (29)
1ap 1 op T62p T o%p
Cpratl, pratl, praty  praT?
According to the relation for ideal gases
CVO(T):CpO(T)_R’ (30)

equation (28) can be written as follows:

T o°p

¢,(0.T)=c,o(T)- R—jp aTZ

In case of a two-phase (liquid-vapor) fluid let’s use the Clausius-Clapeyron

equation, which provides a link between the thermal and the caloric status indicators
of wet steam, namely as follows:

dpy _ N(T)-h(T)

N TL&U‘A%J’ >

based on it we can write the following relation:

_ _ _ 1 1 dpsat _T PPy dpsat
n)=AE)-0)=T[ Lo g ATa

dp. (31)




Thereafter, enthalpy is calculated as follows in case that density and temperature
(p,T) are given. Starting point of 0 ° C saturated liquid whose enthalpy is h,. If the

temperature is higher than the critical temperature, or the temperature is lower than
the critical temperature, and the density is lower than the corresponding saturated
vapor density at a given temperature, enthalpy can be calculated as follows:
The 0 ° C saturated vapor enthalpy is obtained using equation (33):
h=h, +h,(0°C). (34)
Then we get the enthalpy at given (p,T) if we add the result of the following
_To op

relation to result of equation (34)
(1 op j
dT + || —— dp. (35)
J Jo(p@m paTl,

op
dh +——
- Janflapme ) 2
In relation (35) the values are T, =0°C, and p, = p,(0°C). Thus, enthalpy can be

(Po:To)
calculated as follows:
.

V2
h=h, +h,(0°C)+ j(cv(p,T)+1@ Jdn I(E@ —T—g@ jdp. (36)
7 paT|, pOpGpT p°dT|,

If the temperature is lower than the critical temperature and the density is greater
than that of the corresponding saturated steam at the given temperature, and the
density is less than the density of the saturated liquid corresponding to the given
temperature, the enthalpy can be calculated as follows: In wet vapor state the
enthalpy can be calculated based on formula

h=h +xh, =h,—h, +xh, =h, —(1-x ), (37)

where
h =h,(T) is the saturated liquid enthalpy at the given T temperature,

(T) Is the saturated vapor enthalpy at the given T temperature,
h,(T)=h, —h, is the latent heat of vaporization at the given T temperature,

it
=x,(p,T)= '113 pll Is the specific steam content.
Py P

Equation (36) is integrated to p = p,(T), thereby we get the h,(T), and based on
equation (33) the value of h,,(T) can be calculated.

If the temperature is lower than the critical temperature and the density is greater
than the corresponding saturated liquid density at the given temperature, we can
first compute the enthalpy of saturated liquid during the calculation of the enthalpy

according to relation
.

h=h, +h,(0°C)+ j(cv(p:)ig_p

JdT+
7 p Tl
pv(T)
- 1dp| _
Po 'Oa’OT

Jd—m

(38)
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and then we calculate the enthalpy of the fluid along the isotherm using the second
integral of expression (35), and thus the enthalpy can be calculated as follows:
To Op Ty op

;
d
T proT, o2 oT J o

h=h, +h,,(0°C)+ j cv(p,T)+£@ dT +
i paTl,
pv(T)
10 10
o \P 0Pl A\ P 9Pl
For the specific entropy calculation let’s start with the comparison of expressions
(5), (7) and (8) , i.e.

(39)
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Based on equation (11) we can write
h,
S,1 =?'. (41)

For these reasons, the entropy can be calculated similarly to the enthalpy. The 0 ° C
saturated steam entropy can be calculated based on formula

s=s,+s5,(0°C) (42)
then the entropy at the given (p,T) can be calculated according to relation

.
s =5, +5,(0°C)+ I ¢, dT - leg.?

To

dp (43)

In the range of the two-phase the following formula can be used

S=S,— (1_ Xy )Svl (44)
In the liquid phase the entropy can be calculated according to equation
T A(T)
S=5, +sv,(0°C)+j£chT— 1 P dp—s,(T)- . P do (45)
ToT Po P a(T) P 8T

ISOBUTANE STATE EQUATIONS

In household refrigerators the most frequently used refrigerant is isobutane (R600a).
The data and relations of this refrigerant based on [2] are the following:



Molecular mass: M = 58,123 LI critical temperature: T, =407,85 K (134,7 °C),
mo

critical pressure: p. =3,64 MPa, critical density: p. =224,35478 k—% triple point
m

temperature: T, =113,55 K, triple point pressure: p, =0,019481 Pa, liquid density

in the triple point: p, =12,755 g‘—ol.
m

In vapor phase function p= p(p,T) is given by the following modified Benedict-
Webb-Rubin equation:

p=pRT+p2(GlT+G2T1/2 +Gs+%+%j+p3(GeT +G; +%+_|(_;—gj+

+p* G, T +Gn+%j+PSG13+P6[%+%j+/?7%+

+p° (?I'N + $1;j+p9 (_?129 +p3(%+%jexp(—2—;]+

G e
3 Sl )51 5

G G G 2
13 P50 | Pa1 32Je P
P (TZ T e )7 ol

The saturation vapor pressure as a function of temperature is the following:

[\/p1x+Vp2x2 HVpaX>+V x4V X (1-x)P6 ]

Psat = Pc€ ) (47)
-t
where x=—1.
1- Tt
TC
The saturated liquid density can be calculated based on the following:
P =P+ oy — pe )eh(T) ’ (48)
where
10 n-11 13 n-10
hT)=AInx+> All-x 3 |[+> All-x 3 (49)
n=8 n=11
and x=1¢ 1
Tc _Tt

The specific heat at constant pressure of ideal gas is



e

G.
where u=—2,

The equation of state in liquid phase [3]is

Y

V,
. (51)
p:(B+psat)eC -B

where

B=p. [—1+ al-T, )" +b@-T,)"° +d(1-T,)+e(-T, )4/3] (52)

e:ef+ga}+hw2 (53)

C=j+ke (54)
and T, :L, V, =L, \Y :i.
Te Pl(T) P

Based on the above relations the log p-h graph can be drawn which is used in
refrigeration technology (Figure 1).
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Figure 1
Log(p)-h Graph of Isobutane




CONCLUSION

Based on the correlations shown above the status indicators of refrigerants and their
derivatives can be computed. The necessary material properties for the simulation
of refrigeration circuit can be produced. We have shown the relations for the
calculation of the status indicators of isobutane, (which is) nowadays the most
widely used refrigerant in household refrigeration appliances, moreover, the
necessary constant values can be found in the literature cited.
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