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INTRODUCTION 

For the simulation calculations of cooling circuit the thermal and caloric status 

indicators of refrigerants and the relationships between them must be known. 

Therefore, we aimed to determine these. Here, only the fluid status change between 

liquid and gaseous state and these two states will be discussed. It is assumed that we 

know the mass of the fluid molecules  M , the temperature  CT , the pressure  Cp

and the density  C of the critical point, as well as the temperature of the triple

point  tT .  

STATUS INDICATORS 

To describe  the thermal status indicators of the fluid we must know  [1]:(according 

to Gibbs phase rule in case of one phase two-, and in case of two phases only one 

status indicator is freely selectable) 

 the equation of state in gaseous phase in the  Tpp ,  form,

 the saturation vapor pressure function of temperature  satsatsat Tpp  , 

 the saturated liquid density function of temperature  Tll   , 

 the equation of state in liquid phase in the   Tpp ll ,  form. 

In addition to the above, the ideal gas specific heat at constant pressure as a function 

of temperature  Tcc pp 00  must be known for the description of the caloric state

characteristics 







 s

p
ehe BB ,,


 . The ideal gas phase of the fluid is considered as 

the limit of 0 . 

Equations for caloric status indicators are uncertain up to a constant  00 , sh , so the 

value of the constants should be agreed on. According to the scientific literature the 

value of  these constants  are given in saturated liquid state at 0°C, namely 

kg

kJ
h 2000  and 

kgK

kJ
s 10  . 

After all these, let's see how the status indicators can be determined based on these 

data if we know the density and temperature. 

The determination of the pressure is initiated by investigating whether the 

temperature is lower or higher than the critical temperature. If higher, the pressure 

value can be calculated based on function  Tp ,  valid to the gas phase . If less,

then we compute the saturated liquid and the saturated vapor density at the given 

temperature T ; The saturated liquid density according to the relation of  Tl , and
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the saturated vapor density by  solving equation    TpTp sat, . (T is known!)

This gives the saturated vapor density, the  Tv . We investigate the relation of the

given density to these values. If the current density is greater than the density of the 

saturated liquid l  , the pressure can be calculated based on the relation 

 Tpp l , which is valid in the liquid phase. If the density is lower than the 

density of the saturated liquid and is greater than the saturated vapor density 

vl   , the pressure equals to the saturation vapor pressure  Tpp sat , and if

the given density is lower than the saturated vapor density, the pressure can be 

calculated from the state equation  Tpp ,  which is valid in the gas phase.

RELATIONS BETWEEN THE STATUS INDICATORS 

Thermodynamics law I and II. creates a connection between the thermal and the 

caloric indicators. Consequently, for the internal energy the following equation can 

be written: 

Tdsd
p

deB  
 2

. (1) 

Expressing the entropy change from it we get 




d
T

p
de
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ds B 2

1
 . (2) 

Writing the entropy as the function of the temperature and density  Tss ,  and

its differential can be written as follows:  
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similarly in case of internal energy 
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Substituting equation (4) into equation (2) and comparing it to expression (3) we 

can write that 
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Let’s write the mixed second-order derivatives of entropy: 
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we get 
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Introducing nomination 
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 Using equations (7) and (8) the differential of the internal energy can be expressed 

as the following equation: 
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22


 

d
T

pTp
dTcde vB 

















  (9) 

According to Thermodynamics law I and the definition of enthalpy the differential 

of enthalpy can be written as the following relation: 

 dpTdsdh
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Expressing the entropy change from it we get: 
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Writing the entropy as a function of the temperature and pressure  pTss ,  and its 

differential we can write the following: 
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similarly in case of enthalpy 
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Substituting equation (13) into equation (11) and comparing it to expression (12) we 

can write that 
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Let’s write the mixed second-order derivatives of entropy: 
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and based on this we can write 
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Introducing nomination 
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 the differential of enthalpy can be written as follows:  
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Forming the differential of enthalpy according to its definition and using formula 

(9) we get 
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Writing the density as a function of the temperature and pressure, and forming its 

differential we can write 
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Substituting it into equation (19) we get 
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Writing the pressure as a function of the temperature and density, and forming its 

differential as well as using equation (20) we get the following relations: 
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Based on them relation (21) can be written as follows: 
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Substituting relation (22) into equation (19) we get the following expression to the 

differential of enthalpy: 
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Based on relation (25) the specific heat at constant pressure can be calculated 

according to the following formula at known density and temperature: 
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The specific heat at constant volume can be calculated according the following 

equation: 
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where the function in the second integral can be determined according to the 

following equation: 
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According to the relation for ideal gases 

     RTcTc pv  00 , (30) 

equation (28) can be written as follows: 
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In case of a two-phase (liquid-vapor) fluid let’s use the Clausius-Clapeyron 

equation, which provides a link between the thermal and the caloric status indicators 

of wet steam, namely as follows: 
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based on it we can write the following relation: 
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Thereafter, enthalpy is calculated as follows in case that density and temperature 

 T,  are given. Starting point of 0 ° C saturated liquid whose enthalpy is 0h . If the 

temperature is higher than the critical temperature, or the temperature is lower than 

the critical temperature, and the density is lower than the corresponding saturated 

vapor density at a given temperature, enthalpy can be calculated as follows: 

The 0 ° C saturated vapor enthalpy is obtained using equation (33): 

  Chhh vl  00 . (34) 

Then we get the enthalpy at given  T,  if we add the result of the following 

relation to result of equation (34)  
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In relation (35) the values are CT  00 , and  Cv  00  . Thus, enthalpy can be 

calculated as follows: 
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If the temperature is lower than the critical temperature and the density is greater 

than that of  the corresponding saturated steam at the given temperature, and the 

density is less than the density of the saturated liquid corresponding to the given 

temperature, the enthalpy can be calculated as follows: In wet vapor state the 

enthalpy can be calculated based on formula 

   vlvvvlvvlvvlvl hxhhxhhhxhh  1  (37) 

where 

 Thh ll   is the saturated liquid enthalpy at the given T  temperature, 

 Thh vv   is the saturated vapor enthalpy at the given T  temperature, 

  lvvlvl hhThh   is the latent heat of vaporization at the given T  temperature, 
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Equation (36) is integrated to  Tv  , thereby we get the  Thv , and based on 

equation (33) the value of  Thvl  can be calculated. 

If the temperature is lower than the critical temperature and the density is greater 

than the corresponding saturated liquid density at the given temperature, we can 

first compute the enthalpy of saturated liquid during the calculation of the enthalpy 

according to relation 
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and then we calculate the enthalpy of the fluid along the isotherm using the second 

integral of expression (35), and thus the enthalpy can be calculated as follows: 
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For the specific entropy calculation let’s start with the comparison of expressions 
(5), (7) and (8) , i.e. 
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Based on equation (11) we can write 

 
T

h
s vl

vl  . (41) 

For these reasons, the entropy can be calculated similarly to the enthalpy. The 0 ° C 

saturated steam entropy can be calculated based on formula 

  Csss vl  00  (42) 

then the entropy at the given  T,  can be calculated according to relation 
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In the range of the two-phase the following formula can be used  

   vlvv sxss  1  (44) 

 

In the liquid phase the entropy can be calculated according to equation 
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ISOBUTANE STATE EQUATIONS 
 

In household refrigerators the most frequently used refrigerant is isobutane (R600a). 

The data and relations of this refrigerant based on [2] are the following: 



Molecular mass: 
mol

g
M 123,58 , critical temperature:  CKTC  7,13485,407 , 

critical pressure: MPapC 64,3 , critical density: 
3

35478,224
m

kg
C  , triple point 

temperature: KTt 55,113 , triple point pressure: Papt 019481,0 , liquid density 

in the triple point: 
3

755,12
dm

mol
tl  . 

In vapor phase function  Tpp ,  is given by the following modified Benedict-

Webb-Rubin equation: 
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The saturation vapor pressure as a function of temperature is the following: 
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The saturated liquid density can be calculated based on the following: 

    Th
CtlCl e  , (48) 

where 
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The specific heat at constant pressure of ideal gas is 
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where 
T

G
u i9 . 

The equation of state in liquid phase [3]is 
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where 
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(52) 
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Based on the above relations the log p-h graph can be drawn which is used in 

refrigeration technology (Figure 1). 

 

 
Figure 1 

Log(p)-h Graph of Isobutane 

 



 

CONCLUSION 
 

Based on the correlations shown above the status indicators of refrigerants and their 

derivatives can be computed. The necessary material properties for the simulation 

of refrigeration circuit can be produced. We have shown the relations for the 

calculation of the status indicators of isobutane, (which is) nowadays the most 

widely used refrigerant in household refrigeration appliances, moreover, the 

necessary constant values can be found in the literature cited. 
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