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ABSTRACT 

This article, as a synthesis of our results described in our previous articles, deals with 
the formulae necessary to numerically calculate the values that are included in the 
basic data system of a cross-flow turbine, determined by its operation and geometry. 
We handled the data valid to the circumference of the impeller that are related regard-
ing optimizing the losses along the circumference and those that are related regarding 
the optimization to obtain an angular momentum free exit separately. The two data 
systems are interdependent, therefore a complete redesigning of the data may be re-
quired to obtain a suitable compromise. We gave a method to calculate the position of 
the radius widening out inside the impeller, which can be used for estimating the ex-
pected extent of the impact phenomena. Finally, we indicated the formulae to calcu-
lating blading geometry up to the practical requirements. 

1. INTRODUCTION

The geometry of an impeller of a cross-flow turbine must be designed in a way that 
the operation under the desired operating conditions can take place with the least 
losses possible. The blading is cylindrical and the blades have a circular arc shape 
(Figure 1). The initial data for the geometrical design are as follows: the rate of 
flow, the speed of the impeller and the available head. This article summarizes the 
relations, with which the geometrical design that provides the desired operating 
conditions and minimizing the key types of losses can be co-ordinated. The „geo-
metrical design” process consists of harmonizing the dimensions of the impeller and 
the components of the velocity triangles.  

Taking the speed, the rate of flow and the head into account, we calculate the pro-
portions of the impeller so that the exit be angular momentum free. With an exit not 
free of angular momentum, even significant losses may occur. Other sources of loss 
are the shock from the change in the flow direction at the entry and the exit loss 
caused by the kinetic energy being lost due to the exiting mass flow. The shock loss 
can be influenced in an advantageous way by means of an appropriate geometrical 
design. The key is to keep the through-flow inside the impeller as impact-free as 
possible. There is always a potential of impacts at the shaft across the impeller. Im-
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pacts may also take place at the inner circumference of the blading. In order to 
avoid such impacts, the position of the flow jet must be known – this depend on the 
operating state. 

This article builds on our earlier results detailed in our previous publications [1]-[7]. 
Therefore the calculation formulae still refer to the one-dimensional and blade-
congruent flow of an incompressible medium. This allows significant simplifica-
tions, but the results still often yield complex calculation formulae. Therefore we, 
wherever possible, also indicate the calculation formulae in the form of diagrams. 
The accuracy these diagrams can be read with is limited, but this complies with the 
errors resulting from the approximations in the basis of the calculation model.  

2. THE DATA SYSTEM AT THE CIRCUMFERENCE OF THE IMPELLER
THAT DESCRIBES THE OPERATING STATE OF A CROSS-FLOW TUR-
BINE

Figure 1 

Figure 1 shows the velocity triangles in case of an angular momentum free outlet 
and the most common configuration of the impeller and the intake, together with an 
interpretation of the labels. The head H processed by the turbine refers to the medi-
um height of the inlet area BLA ⋅= . The “channel width” B is parallel to the axis of 
the impeller, “transversal dimension” S, as corresponding to a given radius, refers to 
a plane perpendicular to the impeller axis (in the case of the channel guiding the 
flow to the impeller, this dimension is the diameter of the circle tangential to the 
channel walls, while L is the “circumferential length” along the circumference of 
the impeller. With the approximation mentioned in the introduction, the through-



flow can be described with an equally-positioned streamline in the plane of the in-
dividual transversal dimensions. In case of a unit channel width, the volume flow is 
approximately the product of the velocity along the central streamline and the trans-
versal dimension.  
 
By expressing the volume flow that corresponds the turbine’s rate of flow Q, the 
formulae to calculate the intake area A and the channel width B can be obtained: 
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In Figure 2, the left diagram shows the values of the coefficient of the rate of flow 
Q (m3/sec) according to (1); the intake area is expressed in square meters ( A (m2) ). 
The right diagram of Figure 2 shows the values of the coefficient of the intake area 
A (m2) according to (1); the channel width is expressed in meters ( B (m) ). 

 

Figure 2 

The operating state of the turbine is described by the relation of circumferential 
speed IR ω  and meridian speed mc1  , mmI cucR 111   == ωψ .  The numerator and 
the denominator of the parameter of the operating state (ψ) contain data independ-
ent of each other. However, these data have a significant influence on the expected 
shock loss at the inlet and the exit loss. According to out previous publication [3], 
the maximum value of the shock head loss can be estimated with (2). The amount of 
the loss varies along the length L of the circumference. We assume that an impact-
free on-flow occurs at L/2 on the circumference. 
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In case of an angular momentum free exit, the exit head loss is [4]:  
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The diagram of head losses is indicated in Figure 3. The shock loss can be estimated 
more accurately only when the exact characteristics of the inlet are known. Howev-
er, the trend shown by Figure 3 applies here, too, i.e. keeping the angle ε as small as 
possible will help limiting shock loss. A practical precondition to an efficient oper-
ation is minimizing shock loss at the inlet along the whole circumference of the im-
peller involved, L. This can be obtained only by designing the on-flow channel and 
the impeller in a coordinated way [2], [3].  A smaller ε angle will decrease interfer-
ence inside the impeller. This phenomenon can be easily illustrated as the interfer-
ence of the central streamlines of flow entering at shorter imaginary sections along 
mantle length L.  According to (2) and (3), it is also important to limit circumferen-
tial velocity and inlet angle, which of course affects all key dimensions of the im-
peller. 

 
Figure 3 

The operating state ψ  can be expressed using the ratio of absolute intake velocity 
and circumferential velocity,  u1 / c1 (c1m=c1 sin(α1)): 
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Figure 4 shows (4) graphically, with the ratio of absolute intake velocity and cir-
cumferential velocity, u1 / c1, as parameter. 1α  values are given in degrees. This di-
agram clearly shows the interdependence of the basic design data (absolute velocity 
and circumferential velocity at the entry) and the velocity ratio ψ  that characterizes 
the operating state of the turbine and gives information on the direction of the intake 
velocity. Therefore this diagram simplifies tuning the turbine’s operating state and 
the impeller’s dimensions to each other. 
 



The analysis that leads to an optimum compromise should of course take into ac-
count many other aspects that are not dealt with in this publication as well (eg. stat-
ics, economic etc. aspects). 
 

 
Figure 4 

By selecting intake angle α1, outer impeller radius RI and angle ε with an optimum 
compromise, shock and exit losses can be limited for the available water quantity 
and head. The resulting data system is just a first approximation of the geometrical 
data that apply along the circumference of the impeller and of the operating state ψ 
– the data may have to be modified on the basis of the results of the further steps. 

3. THE DATA SYSTEM REQUIRED TO OBTAIN AN ANGULAR MOMEN-
TUM FREE OUTLET FLOW IN A CROSS-FLOW TURBINE 

The geometrical data inside the impeller (the radius ratio r=RII/RI and the intake 
blade angle β1) depend on the data already fixed along the circumference on the one 
hand, and their values should be so selected on the other, that the outlet be angular 
momentum free. In case of an angular momentum free outlet, the flow that exits the 
impeller is radial. In case of defined dimensions and operating state, the position of 
the central streamline can be calculated in the impeller [1]. In Figure 1, we illustrat-
ed the designations in the picture of the streamline as calculated by Formula [1]. In 
Figure 1, the flow is radial at the point e on radius 0R , where the radius is tangen-
tial to the streamline. In the position pictured, the velocity has a circumferential 
component, while, in case of an angular momentum free exit, the point e is located 
on the circumference, i.e. I0 RR = [4], [5]. 
 



Our previous publications [4], [5], [6], [7] detail how to calculate the data system 
valid in the special case of an angular momentum free exit. The formulae are too 
complex, which is why the relations of the data are only shown in diagrams here 
(Figure 4 [7]). Figure 4 summarizes the data set that results in an angular momen-
tum free exit in case of the data dealt with by the one-dimensional model. The bor-
dered diagram illustrates the data system in the most compact way. By expanding 
the data relations, a diagram system suitable for practical use can be assembled, 
which is also shown in Figure 4. According to Figure 4, assuming an angular mo-
mentum free situation, the other data can be calculated from operating state index ψ 
and radius ratio r=RII/RI, given the inlet blade angle β1 or the inlet flow angle α1. 
The radius ratio required to obtain an angular momentum free exit is related to the 
operating state via the inlet flow angle α1.  

 
Figure 4 

In Figure 4, the dotted guiding lines allow for reading off 2 connected data systems 
as examples. One of them connects the numerical values of a data set that can be 
treated as a “rule of thumb”. These are: intake angle α1 =16° intake blade angle β1 



=30° and a radius ratio r =2/3. Moreover, the diagrams also show the operating 
state that corresponds to these data (in the example: ψ = 1.74).  In this way, the ge-
ometrical data system that results in an angular momentum free situation and the 
data set on the circumference that describes the operating state according to Point 2 
can be connected through the data which are common in the two data systems.  

4. LIMITING SHOCK LOSS IN THE FLOW ACROSS THE NON-BLADED 
AREA OF THE IMPELLER OF A CROSS-FLOW TURBINE   

As mentioned, assuming given dimensions and operating states, the location of the 
central streamline in the impeller can be calculated as shown in our previous publi-
cation [1] (Figure 1). On this basis, the outlet angle αi of a flow exiting at a velocity 
of ci along the inner mantle of the impeller can be calculated, and, given the trans-
versal dimension of the on-flow channel S1 at the point A on Figure 1, the transver-
sal dimension Si of the through-flow jet between points B and C of the impeller us-
ing the formula (5). For the calculation, we assume that the relative flow of a ve-
locity of wi enters inside of the blading in a radial way, i.e. wi and ui are perpendicu-
lar to each other.  
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The jet of a width of Si can be drawn, using the streamline considered to be straight 
as centerline. The contour corresponding to the axis of the impeller can also be 
drawn, and therefore it can be checked whether the flow avoids the impeller axis 
and what is the length of the jet crossing the inside contour of the blading. If re-
quired, the design/analysis procedure must be repeated in order to limit the impact 
loss. Our publications [4], [5] showed that an angular momentum free axis can be 
obtained by influencing the position of the central streamline (in case of an angular 
momentum free exit, the tangent to the streamline is radial), therefore the repeated 
design/analysis affects all design parameters. 

5. GEOMETRY OF THE IMPELLER BLADES 

In Figure 1, the circular-shaped blade is illustrated as the EA curve with center K and radi-
us R. The tangent to the blade runs radially at point E. The radius R can be calculated using 
(6) [1]. 
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The centers K of the circular-shaped blades are located along the circle of a radius of RIII  to 
be calculated using (7). 
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The positioning of the blades in the blading is much easier when the central angle γ 
that belongs to the circular arc sections that make up the blade (Figure 1). The inter-



section points of the legs and the circles with the radiuses RI and RII set up the end-
points of circular arc-shaped (radius R) blades in a way that the blade angle corre-
sponding to the radius RI is 1β  and the tangent to the blade curve at the radius RII is 
radial. The relationship between the intake blade angle 1β , the radiuses RI and RI, 
and the central angle γ is given by (8). Using (6) and (8), geometrical data regarding 
the blade curve and the position of the blade within the blading can be calculated. In 
case of the blading, it is not advisable to use diagrams despite the complexity of the 
expressions, in order to keep the accuracy. (7) and (8) can also be used for check-
ing: the intersection point of the circular arcs of radius R, running from the end-
points of the blade curve as calculated above, will mark the center K of the circular 
arc, which is located on the circle of a radius RIII , while using the explicit expres-
sion of 1β , the susceptibility of the intake angle to the dimensional manufacturing 
errors can be examined.  
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